
© 1993-2013 KIPR

11

Botball 2013
Educators’ Workshop

V1.4.1 2013.01.22

© 1993-2013 KIPR

22

Day 1: Getting Started
1. Sign in and collect your materials and electronics

2. Read the information on the next slide about charging a Link
controller

3. Reference workshop slides (Activity 0 ~ slide 28) for installation of current
KIPR Link firmware and KISS IDE software

• At your Team Home Base (on a flash drive at workshops without internet)

4. Update the firmware on your KIPR Link controllers

5. Install current version of the KISS IDE and KIPR Link USB driver for
your computer (see Activity 0 for Mac and Windows specifics)

6. Go through the parts list and materials and verify everything is present

7. If you are not sure how to do any of the previous steps please ask one of
the staff!

© 1993-2013 KIPR

3

Charging the KIPR Link Controller

• For charging the KIPR Link,use only the power
supply which came with your Link
– Damage to the Link from using the wrong charger is

easily detected and will void your warranty!

• The KIPR Link power pack is a lithium polymer
battery so the rules for charging a lithium battery for
any electronic device apply
– You should NOT leave the unit unattended while charging

– Charge away from any flammable materials and in a cool,
open area

© 1993-2013 KIPR

4

2013 Botball National Sponsors

© 1993-2013 KIPR

5

Regional Workshop & Tournament Hosts

© 1993-2013 KIPR

66

Botball 2013
©1993-2013 KISS Institute for Practical Robotics

prepared by:

The KISS Institute for Practical Robotics

with significant contributions from
the staff of KIPR and the Botball Instructors Summit participants

© 1993-2013 KIPR

7

• Bathrooms, food

• Introductions
– First time teams are identified by a colored name tag

• If you’ve done this before, you know how they feel!

• Please help them out

– Workshop staff

• Daily schedule

Housekeeping
Day 1

© 1993-2013 KIPR

8

Workshop Schedule
• Day 1:

– Overview of Botball
• Botball season, related events
• Game preview/video
• Resources & teams

– Topics and Activities
• Activity 0: The KISS IDE
• Activity 1: Programming basics
• Activity 2: Driving Straight
• Activity 3: Build DemoBot

– Lunch
• Activity 4: Conditions and functions
• Activity 5: Starting / shutting down the

robot using sensors
• Activity 6: Motors and servos
• Activity 7: Line following

– Homework

• Day 2:
– New Team Suggestions
– 30 minute game Q&A
– BOPD
– Continue with activities
– Topics and Activities

– Activity 8: Vision

– Lunch
– Selected activities

– Activity 9: Point servo at colored object
– Activity 10: Bang-Bang control
– Activity 11: Proportional control
– Activity 12: Approach specific QR code
– Activity 13: Bang-Bang DemoBot arm
– Activity 14: Proportional DemoBot arm
– Activity 15: Accelerometer for bump detect
– Activity 16: Music on the Create
– Activity 17: Reduce heading errors

© 1993-2013 KIPR

9

Overview of Botball

• Botball is brought to you by the KISS Institute for
Practical Robotics, hereafter referred to as KIPR

• Botball season

• Game preview/video

• Botball Related events
– Global Conference on Educational Robotics (GCER)

– KIPR Open (for those beyond Botball)

– KIPR Video Showcase

• Related curriculum topics

© 1993-2013 KIPR

10

2013 Botball Season

Jan - Mar 2013
• Botball Professional

Development Workshops
• KIPR Open Game released

February 2013
• GCER Call for Papers

• GCER Call for Autonomous
Showcase submissions

Mar - May 2013
• Botball Regional Tournaments

April 2013
• ECER

Spring 2013
• GCER Registration Opens

July 2013
Global Conference on
Educational Robotics (GCER)
• Fun and networking
• International Botball

Tournament
• KIPR Open Tournament
• Autonomous Showcase
• Presentations/Papers/Guest

Speakers

© 1993-2013 KIPR

1111

The Botball Youth
Advisory Council

We are a group of current and former

Botballers who form Botball’s student

government. We work on many projects (e.g.

blogs, forums, live-streaming), with one simple

mission: keep making Botball better!

© 1993-2013 KIPR

1212

community.botball.org

A place for Botballers

• Discuss Botball, technology, and everything else during and after

the Botball season

• Contains a safe and user-friendly chat-room, the Botballer’s Chat,

for getting immediate help to technical problems, or just hanging

out with fellow Botballers across the globe

• The Community is a social network for current and former Botball

participants to meet and hang out, discuss Botball and robotics

technology in general, or just have a good time

A Botball YAC and KIPR Project

© 1993-2013 KIPR

13

13

ECER13 - Hard Facts

European Conference on Educational
Robotics

2nd Botball competition in Europe

Venue: Vienna, Austria
TGM (Vienna Institute of Technology)
Vienna Museum of Technology

Two main parts:
European Botball competition
Talks of Researchers and Students

April
23th - 27th

2013

April
23th - 27th

2013

© 1993-2013 KIPR

14

GCER 2013
The 2013 Global Conference on Educational Robotics will be
held at the Embassy Suites Hotel and Conference Center in

Norman, Oklahoma from
July 6-10, 2013with preconference classes on July 5th

Global Conference on Educational Robotics
http://www.kipr.org/gcer

Conference events will be held onsite in
the conference facilities. We have

secured a block of rooms at the Embassy
Suites - when making reservations, refer

to
http://www.kipr.org/gcer/housing
Rooms at the conference rate will be

available until May 18.

© 1993-2013 KIPR

15

When
– July 6th - July 10th

– Pre-conference activities and workshops July 5th

Who
– Middle school and high school students, educators, robotics enthusiasts,

and professionals from around the world

Activities
– Meet and network with students from around the country and world
– Talks by internationally recognized robotics experts
– Teacher, student, and peer reviewed track sessions
– International Botball Tournament
– KIPR Open Tournament (Botball for grown-up kids!)
– Autonomous Robotics Showcase
– Visit America's heart land (conference rates!)

ALL TEAMS ARE INVITED!

Global Conference on
Educational Robotics

© 1993-2013 KIPR

16

GCER 2014
Location and Date TBA

Global Conference on Educational Robotics
http://www.kipr.org/gcer

Coming July, 2014

© 1993-2013 KIPR

17

KIPR Open Tournament

• The KIPR Open is a tournament produced by KIPR to
encourage ongoing robotics educational activity beyond
high school and Botball

• KIPR Open team entry forms and conference registration
can be found at www.kipr.org/kipr_open

• The 2013 International KIPR Open Tournament will be
held in conjunction with GCER 2013 July 6-10, 2013
– See the KIPR website for information on KIPR Open Tournaments

• Collegiate courses are encouraged to incorporate the KIPR
Open Game into their curriculum

© 1993-2013 KIPR

18

Preview of This Year's Game
Hold Your Questions! Game Q&A is Tomorrow

© 1993-2013 KIPR

1919The Game Board
Hold Your Questions! Complete Review is Tomorrow

Nose Capsules and Booster Sections

Air Lock

Rocket Booster Sections

Launch Area

Payload

Sky Crane Retainer

Transport
Container

Interplanetary Portal

Start Box

Geode

Organic and
Inorganic Samples

Launch
Pads

Sky Crane

Pathway

© 1993-2013 KIPR

20

Tonight-Review the Game Rules
on Your Team Home Base

• We will have a 30 minute Q&A session
tomorrow

• After the workshop, ask questions about
game rules in the Game Rules Forum (the
rules are at the Team Home Base)
– You should regularly review this Forum

– You will find answers to game questions there

© 1993-2013 KIPR

21

(At homebase.kipr.org)

Team Home Base Resources

© 1993-2013 KIPR

22

Resources!
• On your Team Home Base

• Documentation Manual and examples
• Presentation Rubric & Example Presentation
• Demobot build instructions & Parts List
• Controller Getting Started Manual
• Construction Examples
• Hints for New Teams
• Sensor & Motor Manual
• Game Table construction documents
• All 2013 Game Documents

• Botball Community Site
http://community.botball.org/

• KISS Institute for Practical Robotics Tech Support +1-405-579-4609

© 1993-2013 KIPR

2323

Why are we teaching this?

• There are enormous problems facing
humanity today.

• There are also small, but important
problems that no one has figured out
how to solve.

• Today’s students will need to approach
these challenges in innovative ways.

© 1993-2013 KIPR

2424

Science, technology, engineering,
math, and computer science

Botball provides real life
learning opportunities

Project management, teamwork,
communication, and leadership

© 1993-2013 KIPR

25

The Spirit of Botball

• Botball is an educational experience
for students

• Parents, teachers and mentors are
there to guide, not to do

• Adults who want to do should build
practice boards and work on an
entry for the KIPR Open

• Parents and mentors should set
good examples of behavior and
sportsmanship -- especially at
tournaments

Boo

© 1993-2013 KIPR

26

Successful Botball Team
Members . . .

• Communicate and work well as individuals and as a team

• Understand how to look at a challenging situation and
break it into solvable problems

• Think about how to apply what they’ve learned to other
things outside of Botball

• Try a lot of approaches just to see what happens

• Have fun

© 1993-2013 KIPR

27

For a Successful Botball Entry

• Organizeyour team: people, time, equipment

• Think about the problem before building

• Pick parts of the problem to solve
• Build a team of robots that complementeach other

• Build software and hardware together
• Documenteverything and use it for team communications

• Spend as much or more time testingand tuning as building

• Use checklists
• Observewhat other teams do at regionals and then use

what you learn to make an improved entry for GCER

© 1993-2013 KIPR

2828

Thank you for participating!

© 1993-2013 KIPR

29

Activity 0

The KISS IDE
(KIPR Instructional Software System
Integrated Development Environment)

© 1993-2013 KIPR

30

Objectives
The KISS IDE

• Update the Firmware on your KIPR
Link

• Install the KISS IDE on your personal
computer

© 1993-2013 KIPR

31

Charging the KIPR Link Controller
recap

• For charging the KIPR Link,use only the power
supply which came with your Link
– Damage to the Link from using the wrong charger is

easily detected and will void your warranty!

• The KIPR Link power pack is a lithium polymer
battery so the rules for charging a lithium battery for
any electronic device apply
– You should NOT leave the unit unattended while charging

– Charge away from any flammable materials and in a cool,
open area

© 1993-2013 KIPR

32

KIPR Link Firmware Update Procedure
(needed only if firmware isn't up to date)

1. Slide the power switch to turn on the KIPR Link: NOTE – the screen will
turn off for several seconds when booting

2. Home screen has an About tab to identify the firmware version

3. To update firmware first connect the KIPR Link Charger to your Link

4. Copy the file kovan_update.img.gz from the current firmware image folder
to a USB memory stick (version number is on folder name)

5. While holding down the side button on the KIPR Link (opposite side from
the power switch) turn on the Link
• The normal splash screen will first come up, followed by a screen instructing

you to insert the flash drive

6. Insert the flash drive
– A progress bar will appear and in a short time the update will complete

– Your Link will then come up with its opening screen

– Click on Settings >> Calibrate to calibrate screen touch settings

© 1993-2013 KIPR

33

The KISSIDE
(Integrated Development Environment)

• The KISS IDE is "donation ware"
– It is free and can be freely distributed and used for personal and

educational purposes

– If you like it and are looking for a tax deduction, please make a
donation to KIPR

– If you would like to use the KISS IDE in a commercial product,
contact KIPR about licensing

• The latest version for the KIPR Link will be found at:
http://www.kipr.org/products/kisside

– It is also included in the electronic media distributed to participants
of Botball workshops through the Team Home Base

© 1993-2013 KIPR

34

The KISS IDE Installation
• Installation is the same as for most other software applications

(the Team Home Base download site also includes instructions)

• The IDE supports Mac OS versions from 10.6 up, and
Windows from XP through 7
– For Windows, using the KISS IDE with the KIPR Link requires

installation of the USB driver software that is included with the
KISS IDE installer

• If you are running Windows 7 you will probably need to right click on the
installer .exe file so it runs in administrator mode

– If you are using a Mac you will need to install the Developer
Command Line Tools on your system (unless you did so at some
earlier time)

• For OS versions from 10.7 and up, the tools are a 171Mb download from
either the Apple Developer or KIPR web site. For version 10.6 you will need
to install Xcode 3 to get the command line tools. There will be media at the
workshop for the different OS versions. Note: Command Line Tools are not
installed with Xcode 4.

© 1993-2013 KIPR

35

Using the KISS IDE

• The KISS IDE includes facilities that simplify the
production of programs for the KIPR Link robotics
controller

• The KISS IDE editor and robot simulator can be used
whether or not a robot controller is connected

• Programs can be checked for syntax errors such as
typos from within the KISS IDE interface

• To check for logic errors you:
– Can simulate execution of your program using the KISS

IDE’s built in graphical simulator or

– Attach a KIPR Link controller and try running your program

© 1993-2013 KIPR

36

KISS IDE Version
• If your installation was successful, a KISS IDE icon should now be on your

computer’s desktop (Win) or in your Applications folder (Mac)

• Start the KISS IDE by clicking on the icon; the Welcome screen will appear

• Click on Help and select

"About KISS IDE"

• Verify version number

is current
– Version 4.0 or higher

– For the latest version, check
http://www.kipr.org/products/kiss-platform

– If you don't have the current

version, download and install

the new one

© 1993-2013 KIPR

37

Launch the KISS IDE

• Start the KISS IDE by clicking on its icon to get
the Welcome screen

• Click on the New File icon and

and choose the Hello, World! Template

© 1993-2013 KIPR

38

Select Target

• A Target Selection window will appear

• Pick No Target for now and the C
program template will come up

© 1993-2013 KIPR

39

The C Template: Hello, World!

© 1993-2013 KIPR

40

Why C?

• C is a high level programming language developed to support
the Unix operating system
– The KIPR Link controller utilizes a version of Unix called Linux

• C is the most widely used language for systems programming

• Botball robots need to be programmed at the systems level to
take advantage of the features of the KIPR Link

• For Botball, the KISS IDE (Integrated Development
Environment) provides a user friendly interface to develop
Botball programs in C, C++ (Java and Python – soon)

• For this workshop, we will focus onC

© 1993-2013 KIPR

41

First C Program

© 1993-2013 KIPR

42

Objectives
First C program

• Write a simple C program and run it on the
simulator included within the KISS IDE

© 1993-2013 KIPR

43

Prep
First C program

• Demo of a very simple program
– Discussion of what is a C program

– Where to find KISS IDE help

– New file template

– Running the program and observing results

• Detailed explanation of the simple
program

• Recap of the step by step process

© 1993-2013 KIPR

44

Simple Program Demo

• We’ll enter a simple program now
– Your target selection needs to be Simulator

• When you click on Run, the KISS IDE saves, compiles, and
executes your program on the simulator
– Compile is the process of converting your program from ordinary text

into a format the selected target understands

– Run causes the target to execute your program

– Note that when you have created a new file, KISS IDE will ask for a
file name. A C file name can contain text ending with a single period
followed by the letter c

• Good: My File.c

• Bad: My.File.c

© 1993-2013 KIPR

45

Where Can I Get Help?

• The KISS IDE has an extensive Help Manual
including a brief C tutorial
– A manual relevant to the programming language for the

template selected can be found under the Help menu

– When using C for Botball, the help file Manual is the
primary document to consult

– The manual covers the library of functions for
accessing the features of the Link controller and for
controlling a Create module

• The file Sensors and Motors Manualprovides
additional information about the sensors and
motors used with the KIPR Link

© 1993-2013 KIPR

46

KISS IDE Help Manual
• Accessed from the KISS IDE help tab

© 1993-2013 KIPR

47

Templates and Comments

• For starting a new C file for the KIPR Link you
should use the C template, or one of your own
creation (covered later)

• Two ways to comment C programs
// is a comment for rest of line

or
/* is a comment that goes from

the initial slash -star till

the first star -slash */

© 1993-2013 KIPR

48

A Simple C Program
By default, the KISS IDE colors your code and adds line numbers

• Comments appear in
green

• Key words appear
in bold blue

• Text strings appear
in red

• Numerical constants
appear in aqua

• Compiler directives
appear in blue

int main()
{

printf ("Hello, World!\n");
return 0;

}

© 1993-2013 KIPR

49

Select Simulator Target
• Start the ks2 (simulator) application

• Click Target >> Change Target

• Choose Simulator

OR

• If the simulator does not appear as a target, verify that the ks2
application is running and

1. Click on the Manual button

2. Select Network from the drop down menu

3. Type in the address 127.0.0.1 and click OK

© 1993-2013 KIPR

50

Executing the Program in the Simulator

Click on Run to save,
download and execute the
your program on the
simulator

© 1993-2013 KIPR

51

Using the Simulator

• For programs that have their target set to the simulator:
– Click Run in KISS to save download, compile and run your

program

– Clicking on the simulator window prior to pressing run allows the
robot and light to be placed.

– The light can be switched on and off by double clicking

• The simulator pre defines several sensors and motors and
where they are connected to the simulated KIPR Link
– The robots you build may have different arrangements.

© 1993-2013 KIPR

52

Observing Results

Observed result

Your program's output

© 1993-2013 KIPR

53

Simulator's Scrolling RHS Pane

Observed result

© 1993-2013 KIPR

54

Simulator's Scrolling RHS Pane

Observed result

© 1993-2013 KIPR

55

The Program Explained
(it illustrates most C syntax)

© 1993-2013 KIPR

56

int main()
{

printf("Hello, World!\n");
return 0;

}

Function Definition

return type name argument list

© 1993-2013 KIPR

57

int main()

{
printf("Hello, World!\n");
return 0;

}

Blocks of Code

© 1993-2013 KIPR

58

int main()
{

printf ("Hello, World! \n");
return 0;

}

Function Calls

© 1993-2013 KIPR

59

int main()
{

printf("Hello, World!\n") ;
return 0;

}

Terminating Statements

© 1993-2013 KIPR

60

int main()
{

printf("Hello, World!\n");

return 0;
}

Functions Return a Value
(even main)

© 1993-2013 KIPR

61

msleep ()

• Like printf () , msleep () is a built-in
(library) function

• msleep (3000) causes the KIPR Link to pause
for 3 seconds

– Example :
printf ("slow ");
msleep (3000);
printf ("reader \n");

© 1993-2013 KIPR

62

Step by Step Process
• Start the IDE and click on the New File icon

• Select Basic C File Template and the Simulator communications target

• Modify the C program template to create your own program

• At any time you can save the file by using File..Save or File..Save As
– File names can contain: letters, numbers, – and _

– Unless you override it, the KISS IDE will append .c to the file name
• Required to compile and run the program

• Except for extension, do not use a "." in the file name

– The directory where you last saved becomes the default directory for saving
files until you change to another directory

• Check your program by clicking on the Run button
– This automatically saves your program, then runs it if there is no error

• If there is an error, the KISS IDE will give a message and a line number,
marking the line with a red dot (fix the first error, then recompile!)
– the error will be on OR before that line

© 1993-2013 KIPR

63

Example Error Message
Error, Line 5 is missing a ";"

line #: col #

© 1993-2013 KIPR

64

Activity 1 (Objectives)
Programming Basics and Screen Output

Write a program for the KIPR Link that
displays "Hello World!" to the screen, delays
two seconds, and then displays your name on
the screen.

Execute the program on the simulator.

© 1993-2013 KIPR

65

Activity 1 (Task Design)
Programming Basics and Screen Output

Break the objectives down into separate tasks and
think about how each might be accomplished; for
example, the larger task might be developing a
program to operate a robot's claw, which has tasks
within for making the claw open or close. Since this
is our first example, the tasks are pretty simple:

1. Display "Hello World!" on the screen.

2. Delay for 2 seconds.

3. Display your name on the screen.

© 1993-2013 KIPR

66

Activity 1 (Program)
Programming Basics and Screen Output

Use our previous Task Design as Pseudocode (this means "false code") to
help write the real code…

1. Display "Hello World!" on the screen.
– Use printf() function

2. Delay for 2 seconds.
– Use msleep() function

3. Display your name on the screen.
- Use printf() function

Comment your code (pseudocode makes great comments) - your
comments show what you think you told your bot to do, but not
necessarily what it will actually do!

© 1993-2013 KIPR

67

Activity 1 (Experiments)
Programming Basics and Screen Output

• Try adding more printf() statements to your program (pay
close attention to the syntax, particularly the terminating
semi-colon needed by each statement)

• Have the program print out a haiku about robotics
• Execute your revised program (Run button)
• Experiment by leaving off or adding extra "\n " or "\t " to

the start or end of the strings in your printf()

• Try adding the command display_clear();

• Can you print out more lines than can show on the screen at
one time?

• Have the program print out a poem or Haiku. What happens
when the screen fills up?

© 1993-2013 KIPR

68

Activity 1 (Solution)
Programming Basics and Screen Output

/** ***********

********* Activity 1
*** **********/

int main()

{

// 1. Display "Hello World!" to the screen

printf("Hello World!\n");

// 2. Delay for 2 seconds

msleep(2000); //2000ms = 2s

// 3. Display your name to the screen

printf("My name is Botguy.\n");

return 0;

}

© 1993-2013 KIPR

69

Activity 1 (Reflections)
Programming Basics and Screen Output

• What have you learned from this activity?
– e.g., what did you find out from the simulator

– or what did you figure out in messing with the simulator?

• What does the "\n " and "\t " do in printf () ?

• What does display_clear () do?

• How many lines can you see on the screen at once?
What happens to the others?

© 1993-2013 KIPR

70

Operate Simbot

© 1993-2013 KIPR

71

while statement

• Programs normally move from one statement to the next

• Sometimes we have a block of statements we wish to
repeat until some event takes place

• A while statement is used to accomplish this task by
checking to see if something is true
– Tests that check if something is true or false are called

Boolean operations
– More information on "Boolean operators" (such as ==,

<=, >=, != , <, etc.) is in the KISS IDE help
• == (two equals signs together, not one) is used to

test if two values are the same

© 1993-2013 KIPR

72

Background
Robot Simulator – Driving

1. The simulated robot has motors and wheels plugged into motor ports
0 and 2

1. the command motor(<port>,<power>) is used to control motors

2. there are 4 possible motor ports, 0-3

3. motor power levels can be anywhere from -100 to 100 with 0 being off.
The function ao() turns all 4 motors off.

2. The simulator has several sensors including a left bumper in digital
port 8 and a right bumper in port 9

1. the function digital(<port>) returns 0 if that bumper is not pressed and 1
if it is pressed

3. There are light sensors on analog ports 3 and 4
1. The function analog10(<port>) returns the value of that sensor 0-1023

2. Light sensors give small numbers for bright lights and large numbers for
dark.

© 1993-2013 KIPR

73

Function Examples

• motor(0,100);

– Turns on motor 0 at 100% power

• digital(8);

– returns 0 if the left bumper is not pressed and 1 if it is
pressed

• analog10(3);

– returns the value of the left light sensor, Light sensors
give low values for bright lights and high values for
dark

© 1993-2013 KIPR

74

Pseudocode:
Drive Till Bump

• Announce what the program does

• While the left AND right bumpers are not
pressed (have value of 0)
– Turn on the left motor

– Turn on the right motor

• When a bump occurs turn off the motors

• Announce that the program is done

© 1993-2013 KIPR

75

Program
Simulator – Driving forward

/***
Drive the simulated robot forward at half power till it bumps
**
*/
int main()
{

printf("Drive Straight till bump\n"); // announce the program
msleep(1000); // wait 1 second

while (digital(9)==0 && digital(8)==0) // check bumpers
{

motor(0, 55); // Drive left wheel forward at 55% power
motor(2, 50); // Drive right motor forward at half power

}

ao(); // Stop motors
printf("All Done\n"); // Tell user program has finished
return 0;

}

© 1993-2013 KIPR

76

Activity 2 (Objectives)
Programming Basics and Screen Output

Write a program for the KIPR Link that waits
for a light to turn on, then drives until the
robot runs into a wall. You can go straight or
in a curve

Execute the program on the simulator.
Drag the robot to the desired starting position

Drag the light near the robot

Double click the light to turn it on

© 1993-2013 KIPR

77

Activity 2 (Task Design)
Programming Basics and Screen Output

1. Announce the objectives.

2. Start when the light comes on.

3. Drive forward.

4. Stop when bumper pressed.

5. Announce program is over.

© 1993-2013 KIPR

78

Activity 2 (Program)
Programming Basics and Screen Output

1. Announce the objectives.
– Use printf() function

2. Start when the light comes on .
– Use while to check analog10(3)>500

3. Drive straight.
- Use motor() functions like previous example

4. Stop when bumper pressed.
– Use while to check digital(9) and digital(8)

– Use the ao() functions like previous example

5. Announce program is over.
– Use printf() function

© 1993-2013 KIPR

79

Activity 2 (Experiments)
Programming Basics and Screen Output

• Try changing the motor speeds
• Try different values for the light sensor
• Try moving the light source farther away from your

robot in the simulator
• What happens if you drive your robot backwards?
• What if you use:

while (digital(9)==0 || digital(8)==0)

Instead of while (digital(9)==0 && digital(8)==0)

© 1993-2013 KIPR

80

Program
Simulator – Start with Light and Driving Straight

/** ******************
After the Light comes on drive the simulated robot forward at half power till
it bumps
*** ******************/
int main()
{

printf("Turn on light to Drive Straight until bump\n"); // announce

while (analog10(3)>500) {} //while light value is above 500 do nothing
//go on when value is below or equal to 500

while (digital(9)==0 && digital(8)==0) // check bumpers
{

motor(0, 55); // Drive left wheel forward at 55% power
motor(2, 50); // Drive right motor forward at half power

}

ao(); // Stop motors
printf("All Done\n"); // Tell user program has finished
return 0;

}

© 1993-2013 KIPR

81

Activity 3: BUILD DemoBot
Use the DemoBot Building Guide

© 1993-2013 KIPR

82

LUNCH

© 1993-2013 KIPR

83

Operate a Create
Module Using a KIPR

Link

© 1993-2013 KIPR

84

Attach Computer to KIPR Link
USB Cable in Botball Kit

See quick start guide on Team Home Base

© 1993-2013 KIPR

85

Power Up the KIPR Link
Opening Screen

© 1993-2013 KIPR

86

KIPR Link Manual

• For further detail
about the KIPR Link,
consult the KIPR
Link Manual on your
Team Home Base

KIPR Link Manual

© 1993-2013 KIPR

87

Running Your Program on the KIPR
Link

• When you compile a program to the KIPR Link it is
automatically downloaded and made ready to run

• Under the Programs Menu, select your program

• Pressing Run causes the specified program to run

• Your program code is retained on the KIPR Link in
the Programs Menu until manually deleted

© 1993-2013 KIPR

88

KIPR Link in Create Cargo Bay

See Quick Start Guide for more details on
connecting the Create to the KIPR LinkFrom iRobot Create specs

Install theyellow battery into the bottom
of the Create – make sure it snaps in
completely. Connect the Create charger
when not using Create.

© 1993-2013 KIPR

89

Connecting KIPR Link-Create
Cable

• The KIPR Link-Create Cable is
keyed, so it will only insert in
the correct orientation

• The KIPR Link-Create Cable is
keyed, so you will need to
release the lock before removing
– DON'T JUST PULL

KIPR Link-Create
cable (in Botball kit)

Power
connector

Serial
connector

Create
connector• The Create will only TRICKLE

charge the KIPR Link.

© 1993-2013 KIPR

90

• Objectives
– commands for moving

– commands for using Create sensors

– combining commands to do something
interesting

Moving the Create

iRobot Create

CW35

Slide 90

CW35 does simulator do create?
Charles Winton, 1/10/2013

© 1993-2013 KIPR

91

create_connect () &
create_disconnect ()

• The KIPR Link has a serial interface, which by default is set for downloading
programs from the KISS IDE to your KIPR Link via a USB cable connection
– Computer access to the Create module is also by serial interface

– There is a cable in your kit to provide a connection between KIPR Link and Create

• The library function create_connect(); sets the KIPR Link serial
interface for the Create cable connection rather than the USB cable connection
– The Create has to be turned on for this to work

– Once connected, your KIPR Link can send commands to operate the Create

• The library function create_disconnect(); sets the KIPR Link serial
interface back to the USB cable connection and shuts off Create motors
– Power cycling your KIPR Link also sets the serial interface to be for the USB cable

connection (but it won't shut off Create motors!)

CW36

Slide 91

CW36 simulator reference
Charles Winton, 1/10/2013

© 1993-2013 KIPR

92

Create Motor Functions
• create_drive_direct(left_speed, right_speed);

specifies separate right and left speeds for the two drive
motors – the command continues until a different motor
command is received
– Speed can range between -500 and 500 mm/sec
– create_drive_direct(100 , 100); moves the Create

forward at a modest speed
– create_drive_direct(100 , 200); moves the Create

counterclockwise at a modest speed

• create_stop(); stops
the drive motors

• There are more drive
commands; see the Help Manual

© 1993-2013 KIPR

93

Initializing Create Distance and
Angle Calculations

• As the Create operates, the angle turned through and
distance traveled are accumulated

• The functions set_create_distance (<val>) and
set_create_total_angle (<val>) reset the
distance accumulation to start from <val>
– set_create_distance (0); initializes the distance

accumulation to start at 0
– set_create_total_angle (0); initializes the angle

accumulation to start at 0

© 1993-2013 KIPR

94

Create Status Monitoring

• Internal Create sensor data can be accessed by the
KIPR Link using "get_create " library functions
– get_create_distance () returns the distance (in mm)

that the center of the Create has traveled
– get_create_total_angle() keeps track of the

number of degrees the Create has turned through
– get_create_lbump() returns the value of the left bump

sensor (pressed = 1, not pressed = 0)

• Other Create sensors have functions as well…

CW37

Slide 94

CW37 no lag needed?
Charles Winton, 1/10/2013

© 1993-2013 KIPR

95

get_create _…

rcliff() lcliff()

lfcliff()rfcliff()

battery_capacity()

lbump()rbump()

lwdrop()rwdrop()

cwdrop()

© 1993-2013 KIPR

96

External vs. Internal Sensors
• Internal sensors measure things going on inside the robot and are used

to infer how the robot is moving
– e.g., get_create_distance does not measure distance but instead measures

how far the wheels have turned and assumes that robot moves accordingly

– This is called dead reckoning

• External sensing like bump and light sensors measure how the
environment interacts with the robot
– If there is nothing between your robot and the wall, then when the bumper

is pressed, you have probably reached the wall

• Combining the two types increases reliability
– e.g., there is a wall 3m in front of you, if your program moves your

forward and stops when the bumper is pressed, and if your distance sensor
says you have moved more than 2 and less than 4m, then you are probably
at the wall you intended.

© 1993-2013 KIPR

97

Programming for Humans

• Programs should always announce their
intentions:
– Use printf and msleep to have the program print

to the screen what the program does

• Whenever operator input is needed – make sure
that the program prints out a prompt to the user

• Programs should announce when they are done

© 1993-2013 KIPR

98

Demo
Driving Straight

Drive the Create forward until one of the
bumpers is pressed

CW38

Slide 98

CW38 simulator
Charles Winton, 1/10/2013

© 1993-2013 KIPR

99

DemoCode

int main()
{

printf("Trying to connect to Create...\n");
create_connect(); // Program stops till it connects...
printf("Connected. Drive straight until bumper hits\n");
while (get_create_lbump() == 0 && get_create_rbump() == 0)
{

create_drive_direct(150,150); // drive straight at 150mm/s
}
create_disconnect(); // stops communication
printf("All Done\n"); // Tell user program has finished
return 0;

}

© 1993-2013 KIPR

100

Conditions and
Functions

© 1993-2013 KIPR

101

Activity 4 (Prep)
Conditions and Functions

• buttons
• if - else statements (and else if)

• functions

© 1993-2013 KIPR

102

Buttons
• There is 1 physical (named side) and 6 soft buttons (named

a,b,c,x,y,z) that the user's code can read.
– All have name_button() functions which return 1 if the button

is being pressed and 0 otherwise
– All have name_button_clicked() functions which pause if

the button is being pressed and then return 1 when it is released or
return 0 otherwise

– Soft buttons can have their display changed by using
set _name_button_text(" display text ")

– By default only a, b and c are displayed. The 3 extra buttons can be
shown using:

extra_buttons_show()

extra_buttons_hide()

© 1993-2013 KIPR

103

Demo
buttons and if -else statements (with else if)

int main(){
set_a_button_text("1 Beep");
set_b_button_text("2 Beeps");
printf("press buttons for beeps, side button to stop\n");
while (side_button() == 0){

if (a_button() == 1){ // can hold for continuous beeps
printf("beep\n");
beep(); // beep flashes the screen
msleep(500);

}
else if (b_button_clicked() == 1){ // must release button

// must press & release button before beeps happen
printf("beep-beep\n");
beep();
msleep(300);
beep();

}
}
printf("All Done\n"); // Tell user program has finished
return 0;

}

© 1993-2013 KIPR

104

What is a Function?

• Remember your math functions?
– A typical function

• Circumference of a circle is a function of the radius

– The "circumference function" for a circle is the Greek circle
constant π times twice the radius, or C(r) = 2πr

– In general we use the notation f(x) to represent a function
where f is the name of the function and x is its argument

• Functions can have more than one argument, e.g., f(x,y)

– Functions are "deterministic", meaning that if you supply
values for the arguments, the function produces a unique
result

• C(50) = 100π which is approximately 314.159

© 1993-2013 KIPR

105

Functions in C

• A C program is comprised of 1 or more C functions, one
and only one of which must be named main

• C functions follow the same rules as math functions,
except a C function doesn’t have to return a value and it
doesn’t have to have any arguments

• Since variables in C have differing types, you have to
specify the data type for each of your function’s
arguments, and the type of data returned by the function
(which can be void if nothing is being returned)

© 1993-2013 KIPR

106

Function Prototype

• C expects you to specify a prototype for any functions
before they are ever used

• A prototype for the circumference function would appear as:
function name argument name

double circumference(double rad);

data type returned data type for the argument

• In the KIPR Link help Manual the documentation for each
KIPR Link library function gives the function’s prototype

© 1993-2013 KIPR

107

Using Circumference Function
// circumference function prototype
double circumference(double rad);

int main()
{

/*This prints the circumference of a
circle with a radius of 5.4 */
printf("circumference is %g\n" ,circumference(5.4));
// Note the function call is embedded in the printf
return 0;

}

// circumference function definition
double circumference(double rad)
{

return (2* 3.1416 *rad);
}

© 1993-2013 KIPR

108

void beep_once();
void beep_twice();
int main() {

set_a_button_text("1 Beep");
set_b_button_text("2 Beeps");
printf("press buttons for beeps, side button to stop\n");
while (side_button() == 0) {

if (a_button() == 1) { beep_once(); }
else if (b_button_clicked() == 1) { beep_twice(); }

}
printf("All Done\n"); // Tell user program has finished
return 0;

}
void beep_once() {

printf("beep\n");
beep();
msleep(500);

}
void beep_twice() {

printf("beep-beep\n");
beep();
msleep(300);
beep();

}

Demo
Previous Demo Converted to Use Functions

int main(){
set_a_button_text("1 Beep");
set_b_button_text("2 Beeps");
printf("press buttons for beeps, side button to stop\n");
while (side_button() == 0){

if (a_button() == 1){ // can hold for continuous beeps
printf("beep\n");
beep(); // beep flashes the screen
msleep(500);

}
else if (b_button_clicked() == 1){ // must release button

// must press & release button before beeps happen
printf("beep-beep\n");
beep();
msleep(300);
beep();

}
}
printf("All Done\n"); // Tell user program has finished
return 0;

}

Previous Demo

© 1993-2013 KIPR

109

Variables

• Just like arguments for functions, symbolic names can be
used to retain data such as the current value of the distance
traveled
int distance; specifies a "variable" that can hold an integer

– For the variable distance a program might use

distance = get_create_distance();

to store the value returned by get_create_distance

• Variable names in C are made up of contiguous letters (upper
and lower case), the "_" character, and digits
– Variable names cannot begin with a digit
– Notice the practice of using "_" as a substitute for a space

• Variable types include int , double , and many others

© 1993-2013 KIPR

110

Combining Time & Sensing

• If your robot uses msleep to drive for a specified
time, it is literally "sleep moving" and will not be
monitoring bumpers, buttons or other sensors

• The function seconds() returns a value of type
double that represents the Link's internal clock.

• By getting the difference between the current
value of seconds() and one stored from an earlier
time, you can get the elapsed time and use that in
your loop conditional.

© 1993-2013 KIPR

111

Time & Sensing Example

• Here is a program that moves the Create for 5
seconds or until a bumper is pressed,
whichever happens first

int main(){
double start; \\will be used to hold the starting time
create_connect();
start=seconds; \\save the start time
while ((seconds()-start)<10.0 && //check the time & bumps

get_create_lbump()==0 && get_create_rbump()==0){
create_drive_direct(100,100);

} \\exit loop when time is up or bumpers are bumped
create_stop(); create_disconnect();
return 0;

}

© 1993-2013 KIPR

112

Activity 4 (Objectives)
Conditions and Functions

Write a program that behaves differently, dependent
upon which software button is pressed. The code
should be written using functions that you create for
each of the different behaviors.

© 1993-2013 KIPR

113

Activity 4 (Pseudocode)
Conditions and Functions

main()

1. Rename the A and C buttons to say Left and Right

2. Connect to the Create.

3. Loop while the side button is not pressed.
– If the ‘A’ software button is pressed, then call the turn

left function.

– Otherwise, if the ‘C’ software button is pressed, then
call the turn right function

4. Disconnect from the Create.

© 1993-2013 KIPR

114

Activity 4 (Pseudocode)
Conditions and Functions

turn_left (double seconds)

1. Move the Create left wheel backward and the
right wheel forward.

2. Delay the program for an amount of time equal to
the parameter value.

3. Stop the Create.
turn_right (double seconds)

Pseudocode for this function is left as an exercise

Solution is on next two slides; try before you look!

© 1993-2013 KIPR

115

Activity 4 (Solution)
Conditions and Functions

/******* If A turn left, if C turn right (mirror behavior) *******/
int turn_left(double seconds); // prototype for turn_left
void turn_right(double seconds); // prototype for turn_right
int main() {

// 1. Rename buttons
set_a_button_text("Left"); set_c_button_text("Right");
printf("Side button to stop\n"); // announce
create_connect(); // 2. Connect to the Create
// 3a. Loop until the side button is pressed.
while (side_button() == 0) {

// 3b. If the 'A' button is pressed, then turn left
if (a_button() == 1) {

printf("turned left %i degrees\n" , turn_left(1.0)); }
// 3c. Else if the 'C' button is pressed, then turn right
else if (c_button() == 1) { turn_right(1.0); }

}
create_disconnect(); // 4. Disconnect from the Create
printf("All Done\n"); // Tell user program has finished
return 0;

}
(cont'd next slide)

© 1993-2013 KIPR

116

/*Function definitions go below*/
int turn_left(double seconds) {

int initial_angle = get_create_total_angle(0);
// Move left wheel backward and right wheel forward
create_drive_direct(- 300 , 300);
// Delay for time equal to the parameter value
msleep(seconds*1000);
// Stop the Create
create_stop();
// return the angle turned left
return (get_create_total_angle(0) - initial_angle);

}
void turn_right(double seconds) {

// Move the Create left wheel forward
// and the right wheel backward
create_drive_direct(300 , - 300);
// Delay for time equal to the parameter value
msleep(seconds*1000);
// Stop the Create
create_stop();

}

Activity 4 (Solution, Cont'd)
Conditions and Functions

© 1993-2013 KIPR

117

Activity 4 (Experiments)
Conditions and Functions

• Modify solution program so the number of degrees during
a right turn is printed

• Download your code and run your program on the KIPR
Link connected to the Create

© 1993-2013 KIPR

118

Activity 4 (Reflections)
Conditions and Functions

• Does every if statement have to be succeeded by an
else statement?

• Can you have if statements within other if statements?

• How many else if statements can follow an if
statement?

• What is the difference between having an else and an
else if statement at the end?

• Why is it useful to use functions?

© 1993-2013 KIPR

119

Starting/Shutting
Down the Robot
Using Sensors

© 1993-2013 KIPR

120

KIPR Link Sensor Ports
Analog and Digital

analog ports (0-7) and digital ports (8-15)

Sensor plug
orientation

© 1993-2013 KIPR

121

KIPR Link Sensor Scope Screen
• Go to the Sensor Scope screen

– Under the Motors and Sensors tab on the opening screen, then under
Sensors

© 1993-2013 KIPR

122

KIPR Link Sensor Scope Screen

• Plug the two sensors to be used for this activity into analog
ports on the KIPR Link
– Plug the light sensor into any analog port (ports 0-7)

– Plug the reflectance sensor into any other available analog port

• When you point the reflectance sensor towards the IR light
sensor you should see a low value for its port

• If you aim the reflectance sensor at the table and move it
across the table edge its value will change

© 1993-2013 KIPR

123

Infrared Interlude
• Plug the USB camera into your KIPR Link

and navigate to the Camera Page

• Point the camera at an infrared emitting
sensor

• Most cameras are sensitive to infrared light

• You should see a lighted spot where the
sensor's emitter is located

• Your light sensors can detect the emissions
from the reflectance sensor emitter

© 1993-2013 KIPR

124

Sensors for Activity
Using the KIPR Link and sensors

• IR light sensor
– Analog sensor (pull up)

– Plug into any port 0-7

• Reflectance sensors
– Analog sensor (pull up)

– Plug into any port 0-7

– Has an IR emitter and an IR detector

– Light source for this activity

© 1993-2013 KIPR

125

analog10()

• For an analog sensor such as a light or
reflectance sensor plugged into analog
port 2, analog10(2) will provide the
current value of the sensor
– An analog sensor provides a range of values
– The analog10 function gives values from

0-1023

© 1993-2013 KIPR

126

digital()

• For a digital sensor such as a button
sensor plugged into digital port 8,
digital(8); will provide the current
value of the sensor
– A digital sensor’s value is 0 if off and ≠ 0 if

on

© 1993-2013 KIPR

127

Sensor and Motor Manual

• For further detail
about sensors, consult
the Sensor and Motor
Manual on your
workshop Team
Home Base

© 1993-2013 KIPR

128128

Shielding Light Sensors

© 1993-2013 KIPR

129

A Botball Robot Should Have a
Shielded Starting Light Sensor

• The table will be brightly lit

• Overhead lights from the game table will flood an unshielded
starting light sensor rendering it incapable of discriminating
ambient light from the starting light
– Generally, to be effective IR light sensors should be shielded from all

extraneous sources by a light tube

• Opaque objects stop IR light (e.g., foil, black electrical tape)

• Soda straws are not opaque; printer paper is not opaque; two
layers of printer paper are not opaque; a straw wrapped in
printer paper is not opaque

© 1993-2013 KIPR

130

How to Shield a Light Sensor

No!!
Paper is NOT
adequate shielding Yes!

1 2

3

Slide straw over light
sensor (leave a gap in the
front) and tape in place
covering the straw with
electrical tape

© 1993-2013 KIPR

131

wait_for_light ()

• Botball tournament programs should start with the
wait_for_light() library function

• The wait_for_light() function needs an argument (also
called a parameter) which should be an analog port number
– e.g., wait_for_light(3);

– The KIPR Link has 8 analog ports (0-7)
• The wait_for_light function checks the value of the IR

light sensor plugged into the port

• A low value indicates more IR (light on) is being detected, a
high value less IR (light off)

© 1993-2013 KIPR

132

Botball Robots Start …

• Botball robots have to start by themselves when
the game table starting lights go on

• This requires determining the level of light at the
table when lights are off and the level when the
lights are on

• The wait_for_light function steps you
through this calibration and then pauses until
lights are on

• Crucial!!! you must use wait_for_light , or
a version of it of your own creation, for Botball

© 1993-2013 KIPR

133

Timing for Botball
shut_down_in

• When executed, the function
shut_down_in(<game_secs>);

starts a process that turns off all motors after game_secs
has elapsed and keeps any new commands from being
processed

• The shut_down_in function issues a create_stop
command, but if your KIPR Link loses its serial
connection to the Create (probably the result of a loose
cable or an error in your program code), your Create won’t
receive the create_stop (and so won’t stop in time, in
which case you will lose the round!)

© 1993-2013 KIPR

134

Activity 5 (Objectives)
Starting / Shutting Down the Robot Using Sensors

Write a program that monitors a light sensor and
automatically moves the robot once light is detected.

• The robot should automatically turn off after
a predetermined amount of time.

Run the program on the KIPR Link using the Create
platform.

© 1993-2013 KIPR

135

Demo
wait_for_light

/**

********* wait_for_light demo

**/

int main()

{

wait_for_light(0); // light sensor in analog port 0

printf("I have seen the light!\nAll done\n");

return 0;

}

© 1993-2013 KIPR

136

Demo
shut_down_in

/***

********* shut_down_in demo

**/

int main()

{

printf("Program stops in 3 sec\n");

shut_down_in(3.0);

while (side_button()== 0)

{

beep();

msleep(200);

}

printf("All done\n"); // shuts down before this!

return 0;

}

© 1993-2013 KIPR

137

Activity 5 (Pseudocode)
Starting / Shutting Down the Robot Using Sensors

1. Monitor light sensor.

2. Move robot when light detected.

3. Have robot automatically shutdown
after a certain amount of time.

© 1993-2013 KIPR

138

Activity 5
Starting / Shutting Down the Robot Using Sensors

• Implement a program that follows the
pseudocode

• The reflectance sensor contains an emitter and
can be used as the light source for simulating the
start light. Any time the start light should be on,
shine the reflectance sensor at the light sensor (if
there is a bright light available, the reflectance
sensor is not needed)

• A solution is on the next slide if you need it

© 1993-2013 KIPR

139

Activity 5 (Solution)
Starting / Shutting Down the Robot Using Sensors

/** ***************
********* Starting/shutting down the robot using t he sensors
*** **************/
int main() {

printf("Activity 6\n");
// 1. Connect to the Create
while (create_connect());

// 2. Wait for the light sensor on analog port 0 to turn on
wait_for_light(0);

// 3. Shut down in 5 seconds
shut_down_in(5.0);

// 4. Drive each of the Create motors at 100 mm/sec
while (side_button()== 0) {create_drive_direct(100, 100);}
printf("All done\n"); // shut down before getting here!
return 0;

}

© 1993-2013 KIPR

140

Activity 5 (Experiments)
Starting / Shutting Down the Robot Using Sensors

• Increase the amount of time that the robot is
active before it shuts down, and make the
robot go straight and then turn during this
time

• Add a reflectance sensor that points
downward. Have the robot stop when this
sensor detects a black line

© 1993-2013 KIPR

141

Activity 5 (Reflections)
Starting / Shutting Down the Robot Using Sensors

• In your own words, describe what the
wait_for_light function does. How is this
useful for the Botball competition?

• Describe what the shut_down_in function
does? Why is it important that you use this
function in your robot during the competition?

• What are the differences and similarities between
analog and digital sensors?

© 1993-2013 KIPR

142

Motors &
Servos

© 1993-2013 KIPR

143

KIPR Link Motor Ports

Motor ports 0 (Demobot), 1, 2, and 3 (Demobot)

© 1993-2013 KIPR

144

Plugging in DC Drive Motors
• DC drive motors are the ones with two-prong plugs and gray

wires
• The KIPR Link has 4 drive motor ports numbered 0 & 1 on the

left and 2 & 3 on the right
• When a port is powered it has a light that glows green for one

direction and red for the other
• Plug orientation order determines motor direction, but by

convention, green is forward and red reverse

motor port 2

motor port 3
Drive motors
have a 2 prong
plug

© 1993-2013 KIPR

145

KIPR Link Motor PWMs Screen

© 1993-2013 KIPR

146

KIPR Link Motor Commands
mav() , ao() , off()

• mav(motor#, vel); [mav=move at velocity]
– motor# is the motor port (0-3) being used

– vel is the rotational speed of the motor measured in ticks per
second (-1000 to 1000)

– the amount of rotation per tick depends on the kind of motor

– the motor runs at the set speed until turned off or commanded
otherwise

• ao(); turns off all motor ports

• off(motor#); turns off the specified motor port

© 1993-2013 KIPR

147

Motor Position Counter

• As a DC motor runs, the KIPR Link keeps
track of its current position in ticks
– get_motor_position_counter(motor#);

is a library function that returns this value for motor#

– clear_motor_position_counter(motor#);

is a library function that resets the motor# counter to 0

– You can see the current value of the counter for a motor on
the motors..test and Sensor Ports screens

© 1993-2013 KIPR

148

Motor Polarity

• Plug the drive motors into KIPR Link motor ports
0 and 3 (corresponding to simbot when running a
program in the simulator)
– Motor port numbers are labeled on the case below the

screen

• Check motor polarity
– Manually rotate each motor and observe its power light

(it will glow red or green as you rotate the motor)

– If a motor does not turn in the direction you want to
correspond to forward (green), reverse its plug

© 1993-2013 KIPR

149

Servo Motors
• A servo is a motor designed to rotate to a specified position and hold it

• To help save power, servo ports by default are not active until enabled

• A command is provided in the KIPR Link library for enabling (or
disabling) all servo ports

– enable_servos(); activates all servo ports

– disable_servos(); de-activates all servo ports

• set_servo_position(2, 925); rotates servo 2 to position 925

– Position range is 0-2047

– You can preset a servo’s position before enabling servos so it will
immediately move to the position you want when you enable servos

– Default position when servos are first enabled is 1024

• get_servo_position(2); provides the current position of servo 2

– Works only when servos are enabled

© 1993-2013 KIPR

150

KIPR Link Servo Motor Ports

servo ports 0 and 1; servo ports 2 and 3

© 1993-2013 KIPR

151

Plugging in Servos
• Servo motors (brown/black-red-yellow cables with 3 prong

receptacle) plug into the KIPR Link servo ports
• The KIPR Link has 4 servo ports numbered 0 & 1 on the left

and 2 & 3 on the right
• Plug orientation order is, left to right, brown-red-orange when

the KIPR Link is oriented so the screen can be read (or follow
the labeling: - + S; the orange signal wire goes in S)

servo ports 2

brown wire (-)

red wire (+)

orange wire (S)

servo ports 3

© 1993-2013 KIPR

152

KIPR Link Servo Screen

The KIPR Link Servo Test screen can be used to center a servo or determine
what position values to use once the servo is installed on a bot

© 1993-2013 KIPR

153

Sensor and Motor Manual

• For further detail
about motors, consult
the Sensor and Motor
Manual available via
KISS IDE help

© 1993-2013 KIPR

154

while Loop Operating a Servo

• A loop is a program construction used to repeat program steps
until some condition is met

• Suppose we want to have a servo move from position 200 to
position 1800 in steps of 100
– we could do this by writing 16 separate set_servo_position

commands after starting with set_servo_position(1,200);

– with less effort, this can be done by using a while loop
set_servo_position(1, 200); // move servo 1 to position 200
msleep(100); // give servo time to move
while (get_servo_position(1) < 1800)
{ // move servo 1 in steps of 100

set_servo_position(1,get_servo_position(1)+ 100);
msleep(100); // give it time to move

}

© 1993-2013 KIPR

155

while Loop in a Program
Operate the Demobot arm using the buttons

int main() {
int s1Pos= 1024 ;
set_a_button_text("Down"); set_b_button_text("Quit");
set_c_button_text("Up");
set_servo_position(1, s1Pos); // preset servo 1 position
enable_servos(); // turn on servo
printf("Move servo arm up and down with buttons\n");
while(!b_button()){ // move servo 1 in steps of 100

if (a_button()==1){set_servo_position(1, s1Pos- 100);}
if (c_button()==1){set_servo_position(1, s1Pos+ 100);}
s1Pos = get_servo_position(1);
if (s1Pos > 1950){set_servo_position(1, 1950);}
if (s1Pos < 150){set_servo_position(1, 150);}
s1Pos = get_servo_position(1);
if (a_button() != c_button()){printf("servo at %i\n" , s1Pos) ;}
msleep(200); // pause before next move

}
disable_servos(); printf("done\n");
return 0;

}

© 1993-2013 KIPR

156

Activity 6 (Objectives)
Motors and Servos

Lift the Demobot to a desired position
using the servo and the accelerometer

© 1993-2013 KIPR

157

Expected Behavior

Before

After

© 1993-2013 KIPR

158

Activity 6
Motors and Servos

• Have the robot detects when it is tilted, then
stops the servo motion

• You should rely on the accelerometer values, not
the servo position

© 1993-2013 KIPR

159

/******** Stop when accelerometer shows robot has tilted
***/
int main() {

// preset servo 1 position
printf("advance using A button\n\nB to quit\n");
set_servo_position(1, 200);
enable_servos(); // turn on servos
msleep(2000); // pause while it moves and user reads screen
while ((accel_y() > -150) && (b_button()== 0))
{ // move servo 1 in steps of 100

set_servo_position(1,get_servo_position(1)+ 100);
printf("servo at %d\n" , get_servo_position(1));
msleep(200); // pause before next move
while ((!a_button()) && (!b_button())) {}

}
disable_servos();
printf("Tilt! Robot is done\n");
return 0;

}

Activity 6 (Solution)
Motors and Servos

© 1993-2013 KIPR

160

Activity 6 (Reflections)
Motors and Servos

• Why is the value of the B button being
checked in each while statement?

• Why is the msleep statement before the
second while?

• What does the robot do when
disable_servos is executed?

© 1993-2013 KIPR

161

Analog and Floating
Analog Sensors

© 1993-2013 KIPR

162

IR Reflectance Sensors

• An IR reflectance sensor has an emitter producing an IR
beam and an IR light sensor that measures the amount of
IR reflected when the beam is directed at a surface

• There are two reflectance sensors
in the Botball kit

• The KIPR Link library function analog10 returns an
amount that measures the amount of light reflected as a
value between 0 and 1023

• A dark spot reflects less IR, producing a higher reading

© 1993-2013 KIPR

163

IR Reflectance Sensor Behavior

Amount of reflected IR depends on surface texture, color,
and distance to surface (higher values mean less IR
indicating a dark surface or a drop off)

© 1993-2013 KIPR

164

Demo

• Plug a reflectance sensor in port 0 and a
light sensor in port 2

int main() {
while (b_button()== 0) {

printf("reflectance: %i " , analog10(0));
printf("light: %i\n" , analog10(2));
printf("B button exits\n");
msleep(1000);

}
return 0;

}

© 1993-2013 KIPR

165

• Floating analog sensor

• Connect to ports 0-7 with pull-up disabled
• Access with library function analog10(port#)

– You can also use analog(port#) for lower resolution

• Low values (0) indicate large distance

• High values indicate distance approaching ~4 inches

• Range is 4-30 inches. Result is approximately 1/d2.
Objects closer than 4 inches will produce values
indistinguishable from objects farther away

Optical Rangefinder "ET"

© 1993-2013 KIPR

166

Pull-Up Resistors

• Most sensors need a pull-up resistor to register accurate
values
– Pull-up resistors are engaged by default

• Some sensors, e.g., the ET range sensor requires the
port to be floating, i.e., have no pull-up resistor

• The KIPR Link can change each analog port to be
either analog (pull-up resistor) or floating analog (no
pull-up)
– set_analog_pullup(3, 0); sets port 3 to floating and

leaves the other analog ports as they were

© 1993-2013 KIPR

167

Optical Rangefinder

Lens

Position Sensing Device (PSD)

(high value)

(low value)

(low value)

The position sensing device returns
a value based on the displacement
from where the reflected beam hits
it to the focal point for the lens

Focal Point

© 1993-2013 KIPR

168

Demo

• Plug an ET sensor in port 1
int main() {

set_analog_pullup(1, 0);
while (a_button()== 0) {

printf("ET: %i (A Button Exits)\n" ,
analog10(1));

msleep(1000);
}
printf("All done\n");
return 0;

}

© 1993-2013 KIPR

169

Line Following

© 1993-2013 KIPR

170

Objectives
Line following

• Have a robot follow a line it can detect
using a reflectance sensor (attach with
UGlu)

© 1993-2013 KIPR

171

Prep
Line following

• Prep
– Reflectance sensors

– Line following strategies

– Turning through an arc

– Robot setup

– Program steps for activity

© 1993-2013 KIPR

172

Line Following Strategy
Follow the line’s left edge by alternating the following 2 actions:

1. If detecting dark, arc left

2. If detecting light, arc right

© 1993-2013 KIPR

173

Robot Setup
Line following

– Position your robot so the sensor is over the
line and observe values on the Sensor Screen as
you move the sensor left or right over the line

© 1993-2013 KIPR

174

Program Steps
Line following

• Activity (DemoBot)

– Starting with the sensor over the line have
your program repeat the following two steps

1. Until the sensor detects dark, turn in an arc left

2. Until the sensor doesn’t detect dark, turn in an
arc right

• the robot follows the left edge of the line

• Each step requires a loop (indicated by the
word until)

© 1993-2013 KIPR

175

Activity 7
Line following

• Write a program to follow black tape line on a
surface enough lighter than the tape that a
reflectance sensor can tell whether or not it is over
the tape
– Have your program wait for the side button to be pressed

to start following the line

• If you can't figure it out, there is a solution in a
couple of slides

© 1993-2013 KIPR

176

Reflections
Line following

• What happens if a turn in the line is too tight?

• What happens if there is a gap in the line?

• What happens when the robot reaches the end of
the line?

• Only 1 reflectance sensor is being used for line
following in this activity. What strategy using
additional reflectance sensors might improve
accuracy and/or allow you to go faster?

© 1993-2013 KIPR

177

Activity 7 (Solution)
Line following

/* Line following with a single sensor: arc left wh en the
reflectance sensor detects dark and otherwise arc r ight

Use the Sensor Ports screen to find the high & low
reflectance sensor values for the robot on the surf ace

Set the threshold halfway between */
int main()
{

int rport= 7, leftmtr= 0, rghtmtr= 3; // identify port and motors
int threshold= 512 ; // set threshold for light conditions
int high= 100,low= -10 ; // set wheel powers for arc radius
printf("Line following: position robot on tape\n");
printf("Press B button when ready\n\nPress side button to s top\n");
while (b_button()== 0) {} // wait for button press
while (side_button()== 0){ // stop if button is pressed

while (analog10(rport) > threshold) { // continue until not dark
motor(leftmtr,low); motor(rghtmtr,high); // arc left
if (side_button()!= 0) break ; } // or button pressed

while (analog10(rport) <= threshold){ // continue until dark
motor(leftmtr,high); motor(rghtmtr,low); // arc right

if (side_button()!= 0) break ; } // or button pressed
}
ao(); // stop because button pressed
printf("done\n");
return 0;

}

© 1993-2013 KIPR

178

Day 1 Homework
• Reuse Teams: Bring LEGO bricks and Create!

• Work on activities you didn't get to or come in early to work on them
– Challenge: implement line following with the Create (the cliff sensors are reflectance

sensors – see the KISS IDE help file for the function syntax)

• Thoroughly review the game slides on your Team Home Base
– There will be no game review tomorrow, only a 30 minute Q&A

• Test sensors, motors, and KIPR Link ports

• Review the KISS IDE Help

• Review the manuals on your Team Home Base
– KIPR Link Manual

– Sensors and Motors Manual

• Review the BOPD Manual (Botball Online Project Documentation)

• Review "New items for 2013" on your Team Home Base

• Read the "Hints for New Teams Manual" on your Team Home Base

• Send your instructor any questions for the Day 2 recap (email or paper)

© 1993-2013 KIPR

179179

Botball 2013
Educators’ Workshop

Day 2

© 1993-2013 KIPR

180180

Botball 2013
Educator's Workshop

Day 2

1. Sign in

2. Robot controllers back on charge

3. Review Game rules from Team Home Base

4. Early arrivers verify DemoBot is ready and finish up
from yesterday

Day 1 Slides

© 1993-2013 KIPR

181

House Keeping
Day 2

• Recap: Introductions

• Daily schedule

• Take the survey at
https://www.surveymonkey.com/s/HPBMJ6Z

© 1993-2013 KIPR

182

Workshop Schedule
• Day 1:

– Overview of Botball
• Botball season, related events
• Game preview/video
• Resources & teams

– Topics and Activities
• Activity 0: The KISS IDE
• Activity 1: Programming basics
• Activity 2: Driving Straight
• Activity 3: Build DemoBot

– Lunch
• Activity 4: Conditions and functions
• Activity 5: Starting / shutting down the

robot using sensors
• Activity 6: Motors and servos
• Activity 7: Line following

– Homework

• Day 2:
– New Team Suggestions
– 30 minute game Q&A
– BOPD
– Continue with activities
– Topics and Activities

– Activity 8: Vision

– Lunch
– Selected activities

– Activity 9: Point servo at colored object
– Activity 10: Bang-Bang control
– Activity 11: Proportional control
– Activity 12: Approach specific QR code
– Activity 13: Bang-Bang DemoBot arm
– Activity 14: Proportional DemoBot arm
– Activity 15: Accelerometer for bump detect
– Activity 16: Music on the Create
– Activity 17: Reduce heading errors

© 1993-2013 KIPR

183

2013 Botball National Sponsors

© 1993-2013 KIPR

184

2013 Regional Botball Sponsors

© 1993-2013 KIPR

185

Regional Workshop & Tournament Hosts

© 1993-2013 KIPR

186

GCER 2013
The 2013 Global Conference on Educational Robotics will be held at the

Embassy Suites in Norman, Oklahoma from
July 6-10, 2012with preconference classes on July 5th

Global Conference on Educational Robotics
http://www.kipr.org/gcer

Conference events will be held onsite in the
conference facilities. We have a discounted block
of rooms at Embassy Suites and strongly suggest

you stay onsite.
http://www.kipr.org/gcer/housing

We have secured special rates, which include
breakfast and a daily manager’s receptions for

adults

© 1993-2013 KIPR

187

When
– July 6th – July 10th

– Pre-conference activities and workshops July 5th

Who
– Middle school and high school students, educators, robotics enthusiasts,

and professionals from around the world

Activities
– Meet and network with students from around the country and world
– Talks by internationally recognized robotics experts
– Teacher, student, and peer reviewed track sessions
– International Botball Tournament
– KIPR Open Tournament (Botball for grown-up kids!)
– Autonomous Robotics Showcase

ALL TEAMS ARE INVITED!

Global Conference on
Educational Robotics

© 1993-2013 KIPR

188

New Teams

These are helpful hints and suggestions but by no
means the only way to implement and manage your program

© 1993-2013 KIPR

189

Right After the Workshop!

1. Recruit team members.
If you haven’t already recruited team members you can use the
game video from the workshop to show to interested students.

2. Hit the ground running.
• Do not wait to get started.
• You only have a limited build time before the tournament and

time is of the essence.
• The workshop will still be fresh in your mind if you start now.
• Plan on meeting sometime during the first week

after the workshop.

© 1993-2013 KIPR

190

Right After the Workshop!
Students will not inherently know how to mange their time, lets face
it, it is hard for many adults!

3. Plan out the season
• Mark a calendar or make a Gannt chart with important dates:

1st submission documentation due
2nd submission documentation due
3rd submission documentation due
Tournament date

• Set dates and schedules for team meetings
• Plan on meeting a minimum of 4 hours per week. (Botball teams

average 8 hrs/week nationwide)
• Team meetings can be held with the first order of business being

going over the calendar and any upcoming due dates

© 1993-2013 KIPR

191

Right After the Workshop!
3. Plan out the season (continued)
• A large calendar or project plan displayed where everyone can see it

is a good way to go.
• You can draw one on your whiteboard (If the janitor doesn’t

erase it) or put it on butcher or poster paper.
• The local lumber supply store (Lowes or Home Depot) will

carry 4’ X 8’ sheets of melamine backed 1/8” Masonite, that is
relatively inexpensive (~$12). You can write on it just like a
whiteboard, using a permanent marker for the grid and whiteboard
(erasable) markers for everything else. It can easily be cut into
smaller sizes and mounted on the wall.

© 1993-2013 KIPR

192

Right After the Workshop!
4. Build the game board

• The material list and construction instructions for the KIPR
tournament setup are on the team home base.

• This can be a great parent, mentor and student activity.
• The cost is ~ $100, but you can reuse the expensive FRP

for next year’s game board.
• The board is designed so that you can take it down and

put it back up in your classroom.
• Many teams have a classroom or another room in the school

where they can leave it set up. Your school may or may not have
another room you can use, but it doesn’t hurt to ask.

© 1993-2013 KIPR

193

Right After the Workshop!
5. If you can’t build the full game board

• You can build ½ of the board.
• You could tape the outline of the board onto a floor if you have the

right type of flooring.
• You might be able to talk with another team who does have a board

that they would let your team use on a practice day. If you are in this
position and don’t know whom to contact, call us and we can make
introductions and see if something can be set up in your area.

© 1993-2013 KIPR

194

Right After the Workshop!
6. Kit Organization
• Organized parts can lead to faster & easier construction and redesign

of robots.
• Tupperware® containers, tackle boxes, anything that keeps the parts

organized.
• This makes it easier to lock or move the components when you

have another class or are not working on the robots, including
transporting everything to the tournament.

• If a part breaks, it is easier to find a replacement.
• This is a good job for team members and will help them learn what is

in the kit by sorting and counting.

© 1993-2013 KIPR

195

Right After the Workshop!
6. Kit Organization (continued)
• Tupperware® containers or cardboard boxes are great for holding

the robots in progress.
• Allows for easier transport to the tournament.
• You can keep the robots from distracting other classes.
• You can keep the robots safe.
• REMEMBER- There are no requirements to use all of the parts

included in the kit.

© 1993-2013 KIPR

196

Right After the Workshop!
6. Understand the Game
• This is what you should go over with your students on the first

meeting after the workshop.
• Go over the game by using the game table you have built or by

drawing the game field on the board or by projecting the game field
(on the team home base) onto a screen.

• The goal is to have students identify game pieces and areas on the
board where points are scored.

• The game board has markings to help team’s robots navigate or
locate their position.

• If it is on the board there is a reason for it. For example: A black line
leading from the starting box to the scoring area could be used by a
line following program.

© 1993-2013 KIPR

197

Right After the Workshop!
6. Understand the game (continued)
• KIPR always includes multiple tasks that score points.
• There is always a relatively easy way to score points. DO NOT

overlook this.
• Many teams are very successful because they get the simple, “easy

points” consistently every time their robot(s) run.
• Focus on one behavior/task at a time
• Start with easy tasks and work your way to the more difficult ones
• Remember, scoring a few points consistently and having success

is better than being unsuccessful and scoring no points.

© 1993-2013 KIPR

198

Don’t forget about the resources!
The Link, sensor and motor manuals contain a lot of useful
information.
• They are electronic, but some teachers choose to print them out and

put them in 3 ring binders for easy access by the students.
• This is also true of the game rules & specifications and the

documentation requirements.
• This can be a great student activity and it gives you an easy answer

when students ask a question pertaining to those topics;
“Did you look in the binder?”

• Use the construction hints (pictures of previous robots and robot
subsystems) on the team home base.

© 1993-2013 KIPR

199

Ideas on Construction
It is important to note that our competition tables are built to
specifications with allowable variance.

• DO NOT engineer robots that are so precise a 1/4” difference in a
measurement means they are not successful. For example: the
specified height of the elevated platform is15”, but at the
tournament the platform could actually measure 15 1/8”. If your
arm is set for exactly 15” it will not work.

• Review construction documents (like the ones on the Home Base)
to get building ideas

• Search the internet for other robots and structures to get building
ideas

• Test structure robustness before the tournament

© 1993-2013 KIPR

200

You are not alone!

© 1993-2013 KIPR

201

Communication with KIPR

• Newsletters-These have important information-check your
spam filter.

• Emails- These include important information so read them
and forward them to your team-check your spam filter.

• Team Home Base- Check this often, especially the FAQ for
rule questions and technical solutions.

• You can call KIPR staff/technical support during office
hours 8:30-5:00 pm CT 405-579-4609.

• You can also email support@kipr.org any time.

• Use the community sitehttp://community.botball.org/

• Programming tutorial http://nasarobotproject.wordpress.com

© 1993-2013 KIPR

202202

A word about Documentation
• What?

- Botball Online Project Documentation
• When?

- 3 periods during design and build portion
- 1 onsite presentation (8 minute) at regional

tournament
• Why?

- To reinforce the engineering process
- POINTS EARNED IN DOCUMENTATION

FACTOR INTO OVERALL TOURNAMENT
SCORES!

See BOPD Handbook on the Team Home Base for
more information (rubrics and exemplars)

© 1993-2013 KIPR

203

When you come to the tournament.
• Adults are NOT allowed in the pits (you can help them

get settled in and then you must leave)
• Bring ALL of your equipment. Especially your

charging cables, extra LEGO etc.
• Plan on staying for the awards (There are a lot of

Judge’s Choice Awards)

© 1993-2013 KIPR

204

About the starting lights….
• The competition game board will have two moveable

lights on each side.

© 1993-2013 KIPR

205

About the starting lights….
• The competition game board will have two moveable

lights on each side.
• All robots must use a light sensor and be programed to

wait for the light and then start autonomously.
• Robots must shut down automatically at the end of the

match.
• If students do not understand and accomplish this, the

robots will never start or they will not shut down and
they will be disqualified.

• After calibration, do not move the robot or light sensor
• MAKE SURE your students understand how to shield

and mount their light sensors, adjust the starting lights
and calibrate them prior to the tournament.

© 1993-2013 KIPR

206

Management Ideas
Recruit some help.
• If possible, recruit another teacher or parent to help out.
• Parents do not have to be engineers or programmers to help.
• Someone to help organize, bring snacks, sit in the classroom,

oversee students and keep them on task can be a big help.
Divide and conquer.
• You have two robots to design, build and program divide the team

between the two robots.
• Don’t forget about the documentation.
• Divide robots performance tasks into subtasks and use them as

assignments.
• Facilitate- Keep them in check on goals, time lines and expectations.

Team meetings are great for this.

© 1993-2013 KIPR

207

Management Ideas
Herding Cats
• Many students will need a lot of help and practice working

independently (Not running to you with every question and problem)
• Set a policy/procedure of – "before coming to me did you …"

(check the resources, ask your team mates, look online, etc)?
• Use the green cup/red cup.

• Tape a green and red cup together (base to base) for each group.
• The group leaves the green cup UP if they have no questions

or issues.
• They turn the red cup UP if they have gone through the

policy/procedure and still need help.

© 1993-2013 KIPR

208

How do I teach this?

• Start with the “easy points” by having the students discuss
and document what has to happen to score these points
(goal) by working backwards (Task Analysis) from the
desired goal.

• Have a planning strategy meeting to set common goals
• Working backwards helps the students focus on the goal

and the step‐by‐step, sub task or “Mini Tasks” they have to
accomplish to complete the final task.

• Keep calendar up to date with tasks and assignments

© 1993-2013 KIPR

209

How do I teach this?

© 1993-2013 KIPR

210

How do I teach this?

• Move on to the more
complicated “What has to
happen” Harder
Task A (harder points)

© 1993-2013 KIPR

211

How do I teach this?
• When students want the robot to do (task A) and then (task

B) and then (task C) the charts add together making the mini
tasks needed to accomplish both summative and dependent
upon one another.

• Finish task A before moving on to task B.
• After completing task B recheck the functionality of task A.
• REMEMBER THE LAST TASK is always to

shut the robot down.
• Students will have no basis to predict how long it will take

them to complete mini tasks (often underestimating the time
required).

• In the end, if they are successful in completing only one task
(goal) A, they have been successful and most likely will be
competitive at the tournament

© 1993-2013 KIPR

212

How do I teach this?
The students have arrived and asked; what do we do?

• Is their robot successfully and reliably completing mini
task A or completing the wait for light and
starting? Yes, great, now start working on mini task B.

• Many students will successfully complete the mini task
once and think that is sufficient.

• Develop a metric to determine success, (It must wait for
the light to start and work 10 out of 10 times or 4 out of 5
etc).

• If the task is continually giving them problems, reevaluate.
Maybe a mechanical adjustment will make it work or have
they double checked their code? Then explore solutions in
the workshop examples, the Botball community site or
calling KIPR?

© 1993-2013 KIPR

213

How do I teach this?
The Engineering Life Cycle provides an overview of the
entire process.

Reflection

© 1993-2013 KIPR

214

Tournament Awards

© 1993-2013 KIPR

215

Tournament Awards
There are a lot of opportunities for teams to win awards

• Tournament Awards
• Outstanding Documentation
• Seeding Rounds
• Double Elimination
• Overall (Includes documentation+seeding+double

elimination)
• Judges’ Choice Awards (the number of awards is

dependent on number of teams participating)
• KISS Award
• Spirit of Botball
• Outstanding Engineering
• Outstanding Software
• Spirit
• Outstanding Design/Strategy/Teamwork

© 1993-2013 KIPR

216

When you come to the tournament.
• Adults are NOT allowed in the pits (you can help them

get settled in and then you must leave)
• Bring ALL of your equipment. Especially your

charging cables, extra LEGO etc.
• Bring your computers.
• Bring a power strip.
• Plan on staying for the awards (There are a lot of

Judge’s Choice Awards)
• Check the Botball FAQ!
• Make a Checklist! (Tournament supplies and Robot

setup.
• Prepare Your Onsite Presentation!
• Money for lunch or sack lunches.
• A CD or flash drive with a back up file of your code.

© 1993-2013 KIPR

217

Preview of This Year's Game
Q&A is Next

© 1993-2013 KIPR

218218

BOPD
• What?

- Botball Online Project Documentation

• When?
- 3 periods during design and build portion
- 1 onsite presentation at regional tournament

• Why?
- To reinforce the engineering process
- POINTS EARNED IN BOPD FACTOR INTO

OVERALL TOURNAMENT SCORE!

See BOPD Handbook on the Team Home Base
for more information

© 1993-2013 KIPR

219219

Botball T-Shirts

Team preorder - $7
At tournament - $10

Note:
T-shirts are not provided
One preorder per team
Can be modified up to 1
week prior to tournament

botball.org/shirts

© 1993-2013 KIPR

220

Tournament Awards

© 1993-2013 KIPR

221

Tournament Awards
There are a lot of opportunities for teams to win awards

• Tournament Awards
• Outstanding Documentation
• Seeding Rounds
• Double Elimination
• Overall (Includes documentation+seeding+double

elimination)
• Judges’ Choice Awards (the number of awards is

dependent on number of teams participating)
• KISS Award
• Spirit of Botball
• Outstanding Engineering
• Outstanding Software
• Spirit
• Outstanding Design/Strategy/Teamwork

© 1993-2013 KIPR

222222The Game Board

Nose Capsules and Booster Sections

Rocket Booster Sections

Launch Area

Payload

Sky Crane Retainer

Transport
Container

Interplanetary Portal

Start Box

Geode

Organic and
Inorganic Samples

Launch
Pads

Sky Crane

Pathway

© 1993-2013 KIPR

223223

Game Q&A

© 1993-2013 KIPR

224

Vision

© 1993-2013 KIPR

225

Prep
Vision

• Vision setup

• HSV color selection and color blobs

• Training the Link to use an HSV color model

• Using QR codes

• Library functions for using the camera
camera_open(<res>)

camera_close()

camera_update()

get_object_count(<ch>)

get_object_bbox(<ch>,<obj>)

get_object_center(<ch>,<obj>)

get_object_data(<ch>,<obj>)

camera_load_config(<name>.conf)

© 1993-2013 KIPR

226

Vision Setup

• The USB cameras in the Botball kit will
work in either of the Link's USB ports

• Plug in a camera and you will be able to see
the camera image by going to the Camera
screen under the Motors and Sensors menu
– If you unplug the camera, the Link may no

longer recognize it if you plug it back in
• You will need to restart the Link if this happens

© 1993-2013 KIPR

227

HSV Color Selection Plane

Hue=0
Val=0

Sat=0
Hue=359

Sat=255 Val=255

© 1993-2013 KIPR

228

Channels Interface

© 1993-2013 KIPR

229

Color Blobs

• Each pixel on the screen has an HSV color
• When we say "red", we really mean a range of HSV colors on

the color selection plane that are approximately red
• Two rectangular pieces of the color selection plane that

correspond to being "red" specify the range of HSV colors to
be viewed as red by the KIPR Link
– This is called an HSV color model

• A red blob is all contiguous pixels matching one of the HSV
colors in the red range

• A blob has a bounding box, a center, etc.
• If you want to find Botguy with the camera, you look for a big

red blob

© 1993-2013 KIPR

230

Manual Channel Interface

© 1993-2013 KIPR

231

Demo/Video of Setting Color
Models

http://youtu.be/nSszFa7opMA

© 1993-2013 KIPR

232

Performance Factors
• Focus:

– A slightly blurred image smooths out colors and can
improve some tracking reliability

– Sharp focus is important for separating adjoining blobs
and for QR codes

– Adjust focus by turning the focus ring on the camera

• Image Resolution:
– The lower the resolution the higher the frame rate

– This is set by the argument given to
camera_open(<res>)

• HIGH_RES sets the image to 640x480

• MED_RES sets the image to 320x240

• LOW_RES sets the image to 160x120 - recommended

© 1993-2013 KIPR

233

Image Coordinates

• The camera's processed field of view is
treated as an x-y (column, row) coordinate
array
– The upper left corner has coordinates (0,0)
– The lower right corner has coordinates

(159,119) in LOW_RES

– The Link display may distort the camera's field
of view x

y

What are the coordinates of the center?

© 1993-2013 KIPR

234

Vision System Color Models
• You can create multiple vision system configurations

– Each configuration can have up to 4 channels
• YOU MUST SET ONE CONFIGURATION AS THE

DEFAULT

• The KIPR Link can handle 4 Channels
simultaneously

• Each channel can be either a HSV blob tracking
channel or a QR code scanner channel
– If you are tracking QR codes then you are limited to 3

simultaneous HSV blob channels
– You never need more than one QR channel (since it can

read all QR codes).

© 1993-2013 KIPR

235

Vision System Library Functions
camera_update , get_object_count ,

get_object_center

• The KIPR Link library function camera_update(); is a
command that causes the KIPR Link to capture the most recent
camera frame for analysis
– Frame analysis determines objects properties such as the (x,y)

coordinates of the center of the object

• get_object_count(3); provides how many objects are
being seen by channel 3 in the default configuration
– If the count is 0 there are no objects; if -1 the channel does not exist

– Objects are numbered 0,1,2, … from largest to smallest

• get_object_center(3, 0).x; for channel 3, object 0,
returns the value of the center x coordinate of the largest object

© 1993-2013 KIPR

236

More Object Functions
get_object _

center(< ch >,< obj >).x

center(<ch >,< obj >).y

bbox (<ch >,< obj >). ulx

bbox (<ch >,< obj >). uly

bbox (<ch >,< obj >).width

bbox (< ch >,< obj >). height

area(< ch >,< obj >)

© 1993-2013 KIPR

237

Selecting the Action to Perform
if – else

• For while , an action is performed so long as the
condition check is true

• In contrast, for if – else , one action is performed if the
condition is true and another if it is false

• Example:
if (get_object_count(0) > 0)

{ printf(" There's a red blob\n "); }
else

{ printf(" Don't see a red blob\n "); }

• The if control structure is a special case of if – else

© 1993-2013 KIPR

238Example Using Vision Functions
// Set up a camera configuration that is calibrated so that it recognizes
// a red colored object for color channel 0 before running the program
// and make sure that configuration is the default
int main() { // Start up the camera and specify the resolution

int x, y, color=0; // set up for color channel 0 (red)
camera_open(LOW_RES);
printf("Looking for red\nPress A when ready\n\n");
printf("Press B button to quit\n");
while (a_button() == 0); // wait for A button
while (b_button() == 0){ // run till B button is pressed

camera_update(); // process the most recent image
if (get_object_count(color) > 0){

//get x, y for the biggest blob the channel sees
x = get_object_center(color,0).x;
y = get_object_center(color,0).y;
printf("Biggest blob at (%i,%i)\n" ,x,y);

}
else {

printf("No color match in Frame\n");
}
msleep(200); // give user time to read

}
printf("Program is done.\n");
return 0;

}

© 1993-2013 KIPR

239

Activity 8a: Description
Vision

• Plug the camera into your KIPR Link

• Calibrate your vision system so that color model 0 picks
up nearby pink colored objects

• Copy the example program and download it to your KIPR
Link

• Move a pink object around in front of the camera to get a
feel for the boundaries of the camera's field of view

• Modify the program so it prints out whether the blob is to
the right or to the left

• Change the color channel for the program and repeat
using a different color

© 1993-2013 KIPR

240

Activity 8a: Reflections
Vision

• How do lighting and shadows affect your
color model?
– Be sure to calibrate your camera under the same

lighting in which it will be used

• How stable are blobs as you move an object
or camera around while training?

• How close to the boundaries for X (0-159)
and Y (0-119) could you get the centroid
reading for your object?

© 1993-2013 KIPR

241

QR Code data

• get_object_data (<ch >,< obj >)

– returns a string pointer

– returns -1 if the channel or object does not exist

• get_object_data_length (<ch >,< obj >)

– returns an int the length of the string

• get_object_data (< ch >,< obj >)[0]

– returns the first character of the data (e.g., 'P')

© 1993-2013 KIPR

242

Activity 8b: Description
Vision

• Plug the camera into your KIPR Link

• Add a QR Code channel to your camera configuration (note the
channel # -- probably channel 1)

• Copy the example program on the next page and download it to
your KIPR Link

• Display a QR Code on your laptop or phone and point the Link
camera at it

• Modify the printf for QR codes longer than one letter, try using
the printf format %s to display the entire data field:

printf("QR code begins with %s\n" , get_object_data(0,0));

© 1993-2013 KIPR

243

Activity 8b: Code
// Prints the center coordinate of P QR codes otherwise prints first letter
int main(){ // Assumes that channel 0 of default config is QR code

int x,y;
char q;
camera_open(LOW_RES); //start up camera
while (a_button()==0){

camera_update(); // get a new image
if (get_object_count(0)>0){ // is there a QR code?

if (get_object_data(0,0)[0]=='P'){ // Is it a P
x=get_object_center(0,0).x;
y=get_object_center(0,0).y;
printf("P found at %i,%i\n" ,x,y);

}
else { // QR code is not P

q=get_object_data(0,0)[0];
printf("QR code begins with %c\n" ,q);

}
}

}
printf("Done\n");
return (0);

}

© 1993-2013 KIPR

244

QR Codes

• Visit the website: http://www.qrstuff.com

• Allows easy generation of QR codes

© 1993-2013 KIPR

245

Activity 8c: Description
Vision Tracking

• Modify the line following program (Activity 7) to track the
largest object on a vision channel
– Code should be the same whether or not your channels is for a colored

object or a QR Code

• Operating the camera at LOW-RES means that the threshold is
when x is 80

• Improvements:
– Divide the vision field into three regions where if the object's center is to

the left, turn left, if it is to the right, turn right and if it is in the center
region, go straight forward

– If not object detected on that channel is in view stop and wait

© 1993-2013 KIPR

246

Activity 8c: Solution
Vision Tracking

/* Move the robot towards the largest object on cha nnel 0.
Robots stops if no object is detected*/

int main(){
int ch= 0, leftmtr= 0, rghtmtr= 3; // identify channel and motors
int high= 100,low= -10 ; // set wheel powers for arc radius
camera_open(LOW_RES);
printf("Move towards object on channel 0\n");
printf("Press B button when ready\n\nPress side button to s top\n");
while (b_button()== 0) {} // wait for button press
while (side_button()== 0){ // stop if button is pressed

if (get_object_count(ch)>0) { // if object is seen...
if (get_object_center(ch,0).x<65) { // if object is on left...

motor(leftmtr,low); motor(rghtmtr,high); // arc left
}
else { if (get_object_center(ch,0).x>95) { // if object is on right...

motor(rghtmtr,low); motor(leftmtr,high); // arc right
}
else { motor(rghtmtr,high); motor(leftmtr,high);} //go straight

}
}
else { ao();}

}
ao(); // stop because button pressed
printf("done\n"); return 0;

}

© 1993-2013 KIPR

247

Additional Activities

: Point Servo at Colored Object

: Bang-Bang Control

: Proportional Control

: Identify and Approach a Target

: Bang Bang Control with DemoBot Arm

: Proportional Control with DemoBot Arm

: Accelerometer for Bump Detect

: Music on the Create

: Reduce Heading Errors

© 1993-2013 KIPR

248

From Now Until Lunch

• Work on any earlier activities you haven't
finished

• Try out one or two of the additional
activities listed on the previous slide
(activity details are located at the end of
today's presentation)

© 1993-2013 KIPR

249

TAKE YOURSELF TO LUNCH

© 1993-2013 KIPR

250

Remainder of the Day

• Continue working on Activities

• Take advantage of having experts in the
room - ask them your technical questions

• Make contacts with other schools
– Schedule joint practice sessions

– Schedule mini tournaments

– Set up joint fund raising activities

– Etc.

© 1993-2013 KIPR

251

1. Review "New for 2013" on your Team Home Base

2. Review the BOPD Manual (Botball Online Project Documentation)

3. 2013 Documentation expects:

– Online (3 submissions) and Onsite Presentation. (You can't win
without good documentation and a practiced presentation) A scored
example is on your Team Home Base.

4. Side A and Side B for this year's game have different colors

– Robots should be designed and programs written for running on
either A or B sides (KIPR Software will determine what side you
will run on)

5. Teams are allowed to use at most 1 camera on their entry

6. Use the manuals and "hints for new teams" on your Team Home Base

Things for ALL Teams to Remember

© 1993-2013 KIPR

252

Suggestions for New teams

1. Read the "Hints for New Teams Manual" on your Team Home Base

2. Hit the ground running (don't wait to get started)

3. It is okay to ask for help - use the team home base forums, community site and
KIPR

4. If possible, build a practice board (instructions are on your Team Home Base -
this is a great parent/mentor/student activity)

5. Keep It Simple Students (start out with one task and do it well before adding tasks
- a simple robot is easier to build, repair and program)

6. Don't forget the documentation - read and follow the rubrics

7. Check out the "construction hints" pictures of drive trains, effectors and sensor
mounts on your Team Home Base to help generate ideas.

8. Use the DemoBots as a good starting point and modify them as you go.

9. HAVE FUN!

© 1993-2013 KIPR

253

• Test your robots from start to end:
– Shield your starting light sensors
– Go through the entire starting sequence

• Calibrate your light sensor(s) to the starting light
• Make sure the robots stop when they are supposed to

– verify with a stop watch!
• Have a check list of what to bring

– On-site documentation materials
– Make backups of software
– Power strip, laptop power supply, chargers for Create and KIPR

Links
– Bring backups of software

Wrap-up: Avoid Embarrassing
Problems at the Tournament

© 1993-2013 KIPR

254

Check
www.botball.org
and your Team

Home Base
regularly

Good Luck!

© 1993-2013 KIPR

255

Additional Activities

: Point Servo at Colored Object

: Bang-Bang Control

: Proportional Control

: Identify and Approach a Target

: Bang Bang Control with DemoBot Arm

: Proportional Control with DemoBot Arm

: Accelerometer for Bump Detect

: Music on the Create

: Reduce Heading Errors

© 1993-2013 KIPR

256

Point Servo at
Colored Object

© 1993-2013 KIPR

257

Activity 9 (Prep)
Point Servo at Colored Object

• Calibrate your vision system so channel 0 matches for a colored object

• Remember from the vision activities how the vision coordinate system
works and download the program below

• Move the object around in front of the camera to get a feel for the
boundaries of the camera's field of view

int main() { // Activity 9 prep

int x,y;

camera_open(LOW_RES);

printf("Looking for blob\n\nPress side button to quit\n");

while (!side_button()){ //run until side is pressed

camera_update(); / / process the most recent image

if (get_object_count(1) > 0){ // any blobs of the trained color?

x = get_object_center(1, 0).x; y = get_object_center(1, 0).y;

// store x,y of biggest blob

printf(" Color Blob at (%i,%i)\n " ,x,y); msleep(200);

}

else{ printf(" No Blob in Frame\n "); }

}

printf(" Program is done.\n ");

return 0;

}

© 1993-2013 KIPR

258

Activity 9

• Write a program to have the arm on DemoBot
keep pointing at an object moved up and down in
front of the camera (hint: use the y position of the
blob as a factor in your position determination)

• The camera has a vertical angle of view of
approximately 60 degrees, or 1/3 of the range of
motion of a servo
– Servo range is 180 degrees -> 0-2023 servo-tics

– Y coordinate covers 60 degrees from 0-119 pixels

– Each pixel represents about 6 servo-tics

© 1993-2013 KIPR

259

Activity 9 Solution
#define ARMPORT 0

int main()

{

int offset= 662 ,yFactor= 6, x, y,sPos;

enable_servos(); // servos powered on

while (side_button() == 0) {

camera_update(); // get most recent camera image and process it
if (get_object_count(0) > 0) { // there is a blob

x = get_object_center(0, 0).x // x coordinate

y = get_object_center(0, 0).y // and y

display_printf(0,4, "Blob is at (%i,%i)\n" ,x,y);

set_servo_position(ARMPORT,offset+y* 6); // Assumes center position of servo…

// is aligned with vertical center of camera

}

else {

display_printf(0, 4, "No colored object in sight\n");

}

msleep(200); // don't rush print statement update

}

disable_servos(); // servos powered off

printf("All done\n");

return 0;

}

© 1993-2013 KIPR

260260

Bang-Bang Control

© 1993-2013 KIPR

261

Bang-Bang Control

• Bang-bang control, as its name implies, is a
control strategy that changes power to a new value
without a transition such as first slowing down
– The effect is like bumper car bouncing back and forth

between two walls; i.e., you slam into reverse when you
hit one wall (bang) and then slam into forward when
you hit the other (bang), never slowing down to soften
the blow

– Activity 7, line following, used bang-bang with the
robot turning either hard left or hard right. So did 8c

© 1993-2013 KIPR

262

Activity 10 (Objectives)
Bang-Bang Control

Write a program that monitors the floating
analog "ET" sensor (Day 1, slide ~163) to
keep the robot a certain distance away from a
moving obstacle using bang-bang control.

Run the program on the KIPR Link

using the DemoBot

© 1993-2013 KIPR

263

Activity 10 (Pseudocode)
Bang-Bang Control

1. Set analog port 0 to floating analog.

2. Loop until side button is pressed.

a. If the floating analog rangefinder on port 0 has a
reading indicating less than about 6" then back up

b. Otherwise, drive forward

3. Stop the DemoBot when side button is pressed

© 1993-2013 KIPR

264

Activity 10 (Solution)
Bang-Bang Control

// ********* Bang Bang Control

int main()

{

int distVal = 600 ; // change this value to be sensor reading at 6 inches

// Step 1: Set analog port 0 to floating analog

set_analog_pullup(0, 0); // disable pullup on port 0 so port is "floating"

printf("Back up if obstacle too close\n otherwise go forward\n");

printf("Press A button to start\n\n");

while (a_button() == 0);

printf("Press side button to stop\n");

// Step 2: Loop until side button is pressed

while (side_button() == 0) {

// Step 2a: If the floating analog rangefinder on port 0 reads

// greater than distVal, back up .

if (analog10(0) > distVal) { motor(0,- 50); mav(2,- 50); }

// Step 2b: Otherwise, drive ahead

else { motor(0, 50); motor(2, 50); }

}

// Step 3: Stop

ao();

printf("done\n");

return 0;

}

© 1993-2013 KIPR

265

Activity 10 (Experiments)
Bang-Bang Control

• What is the behavior as you move an
obstacle towards or away from the robot?

• Increase or decrease the distance the robot
should stay from the wall. Do you notice a
difference in sensor performance?

© 1993-2013 KIPR

266

Activity 10 (Reflections)
Bang-Bang Control

• What else could bang-bang control be used
for?

• Describe the behavior of the robot using
bang-bang control.

• How can bang-bang control be improved
– Think about activity 8c

© 1993-2013 KIPR

267267

Proportional Control

© 1993-2013 KIPR

268

Proportional Control
• For bang-bang control, motion values change instantly when a target is

reached.
• For proportional control, motion values are changed proportionally to the

difference between an actual and a desired value
• Proportional control works best when controlling motors with velocity

commands (e.g., mav) rather than power commands (e.g., motor)
• If we want the robot to maintain a distance equivalent to sensor value of

600 then we can set the robot's velocity to:
velocity = kP*(600 – analog10(0));

• range sensor values > 600 mean that the robot is too close and generate
negative velocities

• range sensor values < 600 indicate For proportional control, motion values
are changed proportionally to the difference between an actual and a desired
value

• kP can be set to adjust the responsiveness as desired

© 1993-2013 KIPR

269

Activity 11 (Objectives)
Proportional Control

Write a program (or modify Activity 10) that
monitors the "ET" sensor (Day 1, slide ~163)
to keep the robot a certain distance away from
a moving obstacle using proportional control.

Run the program on the DemoBot.

© 1993-2013 KIPR

270

Activity 11 (Pseudocode)
Proportional Control

1. Set analog port 0 to floating analog.

2. Loop until side button is pressed.

a. Set the velocity of both motors of the robot to a value
proportional to the difference between the reading
from the analog rangefinder on port 0 and its reading
for about 6 inches.

3. Stop the DemoBot

© 1993-2013 KIPR

271

Activity 11 (Solution)
Proportional Control

// ********* Proportional Control

int main() {

int velocity, distVal= 600 ;

double kP=1.5; // adjust

// Step 1: Set analog port 0 to floating analog

set_analog_pullup(0, 0);

printf("Back up if obstacle too close\n otherwise go forward\n");

printf("Press A button to start\n\n");

while (a_button() == 0);

printf("Press side button to stop\n");

// Step 2: Loop until side button is pressed

while (side_button() == 0) {

// Step 2a: move the motors proportional to the distance to the obstacle

velocity = kP * (distVal - analog10(0));

mav(0,velocity); mav(2,velocity);

}

// Step 3: Stop

ao();

printf("done\n");

return 0;

}

© 1993-2013 KIPR

272

Activity 11 (Experiments)
Proportional Control

• What is the robot's motor behavior as it gets
close to the stopping point? Observe the
motor lights.
– How does it change if the value of kP is changed?

• Increase or decrease the distance the robot
should stay from the obstacle. Do you notice a
difference in sensor performance?

• What happens when you move the obstacle
inside about 4 inches from the ET sensor?

© 1993-2013 KIPR

273

Activity 11 (Reflections)
Proportional Control

• How does proportional control compare to
bang-bang control?

• What else could proportional control be
used for?
– would it improve color object tracking?

– How about line following?

• Describe the behavior of the robot using
proportional control.

• How can proportional control be improved?

© 1993-2013 KIPR

274

Approach a
Specific QR Code

© 1993-2013 KIPR

275

Activity 12 (Objectives)
Identify and approach a QR code

• Identify and approach a QR code that is a
'P' or a 'T' based on initial user input.

© 1993-2013 KIPR

276

Activity 12 (Pseudocode)
Identify and approach a QR code

• Create two buttons labeled "P" and "T" for the user to press
• Identify all QR codes
• Use a for loop to step through each QR code in the channel
• Check each QR code for information

– If it matches the user input
• Approach target – see activity 8c and slide ~277

– If no matches found, spin to search
• Stop with bump

© 1993-2013 KIPR

277

Pseudocodefor
Approach to Target

1. Keep moving until close enough (while)

2. if target is to the left, realign to left

3. otherwise if target is to the right, realign to
right

4. and otherwise move on toward the target

© 1993-2013 KIPR

278

The for Loop

• The for loop is an alternative to while that can be clearer if you are
trying to loop a specific number of times.
– initialize i to 0, loop while i < takes on the index value of each object

representing a QR code, and add 1 to i at the end of each iteration.
– then check each object and if it is the QR code for 'P'…

int i;
...
for (i=0;i<get_object_count(0);i++){

if (get_object_data(0,i)[0]=='P'){
...

}
...

}
...

© 1993-2013 KIPR

279

How Close Am I?

• A good way to use the camera to determine
proximity to a target is to note:
– If the camera is higher off the ground than the target, as

your robot approaches the target the y coordinate of the
target increases; if the camera is lower – vice versa

– The y coordinate value relates to how close you are!

– Other properties of objects in the camera's view change
systematically with distance

– Your program can access these properties (see the
Manual for a list of vision functions)

© 1993-2013 KIPR

280

Activity 12 (Reflections)
Identify and approach a QR code

• If you use higher speeds how well does the
algorithm perform?

• Rather than spin moves, suppose you
continue to move forward but angle back
toward center
– performance should improve

– but are there risks?

© 1993-2013 KIPR

281

Bang-Bang Control
and Arm

© 1993-2013 KIPR

282

Objectives
Using a servo motor to operate an arm

• Write a function to operate the servo that
raises or lowers the arm on DemoBot

© 1993-2013 KIPR

283

Prep
Using a servo motor to operate an arm

• Prep
– Using servo motors

• Review Day 1 servo motor section

– Bang-bang control

– Arm function

© 1993-2013 KIPR

284

Using Servos (Recap)

• The KIPR Link library functions for enabling (or disabling) all servo
ports:
– enable_servos(); activates all servo ports

– disable_servos(); de-activates all servo ports

• set_servo_position(2, 925); rotates servo 2 to position 925

– You can preset a servo's position before enabling servos so it will
immediately move to the position you want when you enable servos

– Default position when servos are first enabled is 1024

• get_servo_position(2); provides the current position of servo 2

– Works only when servos are enabled

• The KIPR Link Servo Test screen can be used to center a servo or
determine what position values to use once the servo is installed on a
robot

© 1993-2013 KIPR

285

Servos and DemoBot

• There is one servo on DemoBot for raising
or lowering its arm

• The Servo Test screen can be used for each
servo to determine limit settings
– Arm fully up and arm fully down

• Record these values for later use

© 1993-2013 KIPR

286

Bang-Bang Control

• Bang-bang control is a control strategy that
changes power to a new value without a transition
such as first slowing down
– With a moving robot, it is bang-bang control if you

slam into reverse when you hit a wall (bang) going
forward and then slam into forward when you hit a wall
going backward (bang), never slowing down to soften
the blow

– Snapping an arm up or down is also a form of bang-
bang control

© 1993-2013 KIPR

287

Arm Function (Bang-Bang)

• Assuming servos have been enabled
– To raise the arm (bang)

set_servo_position(<armport>, <raised-position>);

– To lower the arm (bang)
set_servo_position(<armport>, <lowered-position>);

• Function prototype
void arm(int up_down);

• Function strategy
– if the parameter up_down is 1 raise the arm

– else lower the arm

© 1993-2013 KIPR

288

Selecting the Action to Perform
if – else

• For while , an action is performed so long as the
condition check is true

• In contrast, for if – else , one action is performed if the
condition is true and another if it is false

• Example:
if (up_down != 0) // bang

{set_servo_position(ARMPORT, UPOS);}
else // bang

{set_servo_position(ARMPORT, DPOS);}

© 1993-2013 KIPR

289

C Preprocessor
#define

• Before your program is compiled it is first examined
by the C preprocessor for preprocessing commands

• #define
– Equates a meaningful name to repeatedly encountered text

• #define LMOTOR 0

• #define GET_PC get_motor_position_counter

– The preprocessor will replace all occurrences ofLMOTORwith 0 and
GET_PCwith get_motor_position_counter ; for example,

if (GET_PC(LMOTOR) < 30) { . . .

is equivalent to

if (get_motor_position_counter(0) < 30) { . . .

© 1993-2013 KIPR

290

Program Steps
Using a servo motor to operate an arm

• Create #define statements for using servos
– Names specifying limits of servo travel,

UPOS is <up-position>, DPOS is <down-position>

– Names for arm function action
UP is 1, DOWNis 0

– Names to remember the ports for the arm servo
ARMPORT is 0

• Arm function prototype
void arm(int up_down);

• In your main function
– enable_servos();

– Repeat several times: raise the arm, sleep a bit, lower it, sleep a bit
– disable_servos();

• Arm function definition

© 1993-2013 KIPR

291

Activity 13
Bang-bang control with Demobot arm

• Write a function with prototype
void arm(int up_down);

that uses bang-bang control to raise/lower the arm on
DemoBot and uses #define to assign more meaningful
names to constant values

• Start and stop with button presses

• Test your function using a program as outlined in the
program steps

• Adjust your arm's UPOSand DPOSvalues as necessary to
improve the accuracy of the arm's movement

© 1993-2013 KIPR

292

Reflections
Bang-bang control with Demobot arm

• How would you attach and operate a claw
attached to the arm?

• Would arm modifications be needed?

• When would it be better to use a control
strategy that raised/lowered the arm
gradually?

© 1993-2013 KIPR

293

Activity 13 (Solution)
Bang-bang control with Demobot arm

// Using a servo motor to operate an arm using bang -bang control
#define DOWN 0 // arm is raised
#define UP 1 // arm is lowered
#define UPOS 200 // servo position arm raised
#define DPOS 1200 // servo position arm lowered
#define ARMPORT 0 // servo port for arm
void arm(int up_down); // prototype for arm function
int main() {

arm(UP); // initialize arm position as up
enable_servos(); // start servos with arm up
printf("Lower and raise arm until side button pressed\n");
printf("Press A button to start\n\n");
while (a_button() == 0);
while (side_button() == 0) { // repeat until user presses side button

msleep(2000); arm(DOWN); // leave up for 2 seconds, then lower it
msleep(2000); arm(UP); // leave down for 2 seconds, then raise it

}
disable_servos(); // shut down servos
printf("Done!\n");
return 0;

}
void arm(int up_down) {

if (up_down != 0) set_servo_position(ARMPORT, UPOS);
else set_servo_position(ARMPORT, DPOS);

}

© 1993-2013 KIPR

294

Proportional Control
and Arm

© 1993-2013 KIPR

295

Objectives
Using proportional control to operate an arm

• Write functions to operate the servo
controlling the arm servo on DemoBot, one
to raise the arm and one to lower the arm
– Have each function slowly speed up the servo

after it starts, then slow it down as the limit of
arm travel is neared

© 1993-2013 KIPR

296

Prep
Using proportional control to operate an arm

• Prep
– Proportional control

– Speeding up then slowing down proportionally

– Function for raising an arm

© 1993-2013 KIPR

297

Proportional Control
• For bang-bang control, motion values change instantly when a target is

reached

• For proportional control, motion values are lowered proportionately as the
target is neared

– Assume the servo position for fully down is given by the #define names
DPOSand for fully up by UPOS, where UPOS < DPOS

– These are best determined using the Servo Test screen
• As an example, assuming enable_servos(); here's a loop that slows

down the servo as it moves closer to being fully raised
while (srvpos > (UPOS+ 5)) { // quit if close enough

// reduce srvpos by a smaller amount each time
srvpos = srvpos - sqrt(srvpos-UPOS);
set_servo_position(ARMPORT,srvpos);
msleep(100); // give time to move

}
set_servo_position(ARMPORT,UPOS); // finish up

© 1993-2013 KIPR

298

Speeding Up, Then Slowing Down

• For an arm, it is useful to gradually increase speed as the arm
moves, then slow it back down as it nears its target position
– The midpoint of arm travel is

midpt = UPOS+(DPOS-UPOS)/ 2;

or half way between UPOSand DPOS

– When moving away from UPOS, sqrt(srvpos-UPOS) increases
and sqrt(DPOS-srvpos) decreases

if (srvpos < midpt) amt= 5+sqrt(srvpos-UPOS);
else amt = 5+sqrt(DPOS-srvpos);
srvpos = srvpos + amt; // amt to change srvpos

• amt is higher towards the midpoint and lower toward the up and
down positions (UPOSand DPOS)

• 5 is added to amt to ensure when using amt to move the servo it
is at least 5 from its current position

© 1993-2013 KIPR

299

Function to Raise Arm
Proportional control

• From the current position of the servo, if less than halfway to being
raised, speed up and once past halfway begin slowing down
void raise_arm() {

int amt, srvpos=get_servo_position(ARMPORT);
int midpt = UPOS +(DPOS-UPOS)/ 2;
while (srvpos > (UPOS+ 5)) { // quit if close enough

if (srvpos < midpt) amt = 5 + sqrt(srvpos-UPOS);
else amt = 5 + sqrt(DPOS-srvpos);
srvpos = srvpos - amt; // move closer to UPOS
set_servo_position(ARMPORT,srvpos); // move arm
msleep(100); // give time to move

}
set_servo_position(ARMPORT, UPOS); // finalize at UPOS

}

© 1993-2013 KIPR

300

Activity 14
Using proportional control to operate an arm

• Write functions with prototypes
void raise_arm();
void lower_arm();

that use proportional control to operate the arm on
DemoBot, speeding up through the midpoint of travel then
slowing down

– Rework the raise_arm example to get lower_arm

• Test your functions by writing a main function to raise the
arm and then lower the arm, repeating until the side button
is pressed
– Don't forget to put in #define names and values for UPOS,

DPOS, and ARMPORT

© 1993-2013 KIPR

301

Reflections
Using proportional control to operate an arm

• Are there any advantages for using non-linear scaling
instead of linear scaling for proportional control?
– What would be the effect of changing the constant 5 used in the

examples to other values?

• You could raise and lower the arm using bang-bang
control – how would this affect being able to hold
something in a claw attached to the arm?

• How would you write a single function for raising/lower
the arm (like done for bang-bang raising/lowering the
arm), and make it independent of whether UPOS < CPOS
or vice-versa?

© 1993-2013 KIPR

302

Activity 14 (Solution)
Using proportional control to operate an arm

// Using proportional control to operate an arm
#define UPOS 200 // servo positions for arm up
#define DPOS 1200 // servo positions for arm down
#define ARMPORT 0 // servo port for arm
void raise_arm(); // prototype for arm function
void lower_arm(); // prototype for arm function
int main() {

set_servo_position(ARMPORT, DPOS); // initialize arm down
enable_servos(); // and start servos
printf("Lower and raise arm until side button pressed\n");
printf("Press A button to start\n\n");
while (a_button() == 0);
while (side_button() == 0) { // repeat until user presses button

msleep(1000); raise_arm(); // leave down briefly, then raise it
printf("Arm is up\n");
msleep(1000); lower_arm(); // leave up briefly, then lower it
printf("Arm is down\n");

}
disable_servos(); // shut down servos
printf("DONE!");
return 0;

}
(Continues on next page)

© 1993-2013 KIPR

303

void raise_arm() {
int amt, srvpos = get_servo_position(ARMPORT);
int midpt = UPOS +(DPOS-UPOS)/ 2;
while (srvpos > (UPOS+ 5)) { // quit if close enough

if (srvpos < midpt) amt = 5 + sqrt(srvpos-UPOS);
else amt = 5+sqrt(DPOS-srvpos);
srvpos = srvpos - amt; // move closer to UPOS
set_servo_position(ARMPORT,srvpos); // move arm
msleep(100); // give time to move

}
set_servo_position(ARMPORT, UPOS); // finalize at UPOS

}
void lower_arm() {

int amt, srvpos = get_servo_position(ARMPORT);
int midpt = UPOS +(DPOS-UPOS)/ 2; // point of fastest travel
while (srvpos < (DPOS- 5)) { // quit if close enough

if (srvpos < midpt) {amt = 5 + sqrt(srvpos-UPOS); } // move amount
else { amt = 5 + sqrt(DPOS-srvpos); } // (at least 5)
srvpos = srvpos + amt; // move srvpos closer to DPOS
set_servo_position(ARMPORT,srvpos); // move arm
msleep(100); // give time to move

}
set_servo_position(ARMPORT, DPOS); // finalize at DPOS

}

Activity 14 (Solution, Cont'd)
Using proportional control to operate an arm

© 1993-2013 KIPR

304

Accelerometer

© 1993-2013 KIPR

305

Objectives
Detect a hit when backing up the Create module

• The Create has no rear bumper, so use the
KIPR Link accelerometer to determine
when it hits something while backing up

© 1993-2013 KIPR

306

Prep
Detect a hit when backing up the Create module

• Use the Graph screen to initially
determine values the accelerometer
generates when it is hit in the rear

© 1993-2013 KIPR

307

Accelerometer
• An accelerometer measures force accelerating an object in 3 directions

(vertical z, horizontal x, and horizontal y)

– The y direction is front-to-back on the KIPR Link, x is left-to-right

– Midpoint of 0, -512 to 511 range

• For an object at rest or moving on a flat surface at a constant speed the
accelerometer measures no force for x and y

– Gravity always exerts a force, so z > 0

– Lining the KIPR Link up on the Create to look forward, it's rear is to the
front of the Create and moving forward is the y direction

• The Graph screen shows this behavior for the KIPR Link's built in
accelerometer (and can be used for other sensors as well)

– scaling for the accelerometer has gravitational force (z value) at around
256 (perhaps off by 10-15%)

– Suddenly stop the KIPR Link while moving forward to see y spike

© 1993-2013 KIPR

308

KIPR Link Sensor Graph Screen

Changeable sampling rate (ms)

© 1993-2013 KIPR

309

Sample accel_x Test

• Assume a variable fwd_bk is being used to determine if
we're looking for a hit while going forwards (+1) or while
going backwards (-1)

• For the case going backwards, fwd_bk is -1, so when
positive acceleration (acceleration in the forward direction)
is detected something has been hit

create_drive_straight(- 250);
msleep(500); // get to constant speed
while (fwd_bk == - 1) { // switch if hit

if (accel_y() > 100) { fwd_bk = 1; }
}

© 1993-2013 KIPR

310

Activity 15
Detect a hit when backing up the Create module

• Use the accelerometer to detect when the
Create hits something while going forward
or backward

• Pick the accelerometer axis (x, y, or z) that
is aligned with the direction of motion

• When something is hit reverse direction

• Stop when the side button is pressed

© 1993-2013 KIPR

311

Reflections
Detect a hit when backing up the Create module

• What happens if the accelerometer fails to
detect a bump?

• What if you try to use different values
(larger or smaller than 100) to detect a
bump?

© 1993-2013 KIPR

312

Activity 15 (Solution)
Detect a hit when backing up the Create module

// Using the accelerometer to detect a hit when mov ing the Create module
int main() {

int fwd_bk = - 1;
int threshold = 100;
create_connect();
printf("Forward and back reversing direction on impact\n");
printf("Press A button when ready\n\nPress side button to q uit\n");
while (a_button() == 0) {}
while (side_button() == 0) {

// monitor for a hit while going backward
create_drive_straight(- 250) ; // start going backwards
msleep (500); // give time to reach constant velocity
while (fwd_bk == - 1) {

printf ("Moving backwards\n");
if (accel_y() > threshold) { fwd_bk = 1; } // hit, reverse direction
if (side_button() == 1) { break; }

}

(Continues on next page)

© 1993-2013 KIPR

313

Activity 15 (Solution, Cont'd)
Detect a hit when backing up the Create module

// monitor for a hit while going forward
create_drive_straight(250); // start going forwards
msleep(500); // give time to reach constant velocity
while (fwd_bk == 1) {

printf("Moving forward\n");
if (accel_y() < -threshold) { fwd_bk = - 1; }

// hit detected, reverse direction
if (side_button() == 1) { break ; }

}
}
create_disconnect();
printf("done\n");
return 0;

}

© 1993-2013 KIPR

314

Music on the Create

© 1993-2013 KIPR

315

Activity 16

• Look at the following example and Create
your own music
– You can't have more than 16 songs, 16 notes or

fewer per song

© 1993-2013 KIPR

316

Music on the Create

Useful Song Functions
• gc_song_array[16][33] can be

used to store 16 songs.
• create_load_song(int <song>) is

used to load a song from
gc_song_array into the Create.

• create_play_song(int <song>) is
used to load a song from
gc_song_array into the Create.

• get_create_song_playing(int

<song>) returns 1 if a song is playing,
0 if it no song is currently playing.

© 1993-2013 KIPR

317

Create Music Demo

• Dueling Banjos: E F
G E F D E C D

• Create notes: 64 65
67 64 65 62 64 60 62

int main(){
create_connect();
printf("This program plays a song on the Create\n");
gc_song_array[0][0]= 9; //there are 9 notes in the song
gc_song_array[0][1]= 64; //E
gc_song_array[0][2]= 16; //.25 sec
gc_song_array[0][3]= 65; //F
gc_song_array[0][4]= 16; //.25 sec
gc_song_array[0][5]= 67; //G
gc_song_array[0][6]= 32; //.5 sec
gc_song_array[0][7]= 64; //E
gc_song_array[0][8]= 32; //.5 sec
gc_song_array[0][9]= 65; //F
gc_song_array[0][10]= 32; //.5 sec
gc_song_array[0][11]= 62; //D
gc_song_array[0][12]= 32; //.5 sec
gc_song_array[0][13]= 64; //E
gc_song_array[0][14]= 32; //.5 sec
gc_song_array[0][15]= 60; //C
gc_song_array[0][16]= 32; //.5 sec
gc_song_array[0][17]= 62; //D
gc_song_array[0][18]= 32; //.5 sec
create_load_song(0);
printf("Song is starting\n");
create_play_song(0);
printf("Song playing %d\n" ,get_create_song_number(.05));
while(get_create_song_playing(.1)){} //wait until song
printf("Song has finished playing\n"); // finishes
return 0;

}

© 1993-2013 KIPR

318

Remove
Accumulated

Heading Errors

© 1993-2013 KIPR

319

Activity 17
Remove Accumulated Heading Errors

• As your robot moves about its heading will drift from the
robot's "idea" of its heading
– When moving straight, the robot's heading will drift

– When making a turn, the actual angle will differ from the angle
specified

• You can have your robot occasionally do a maneuver to
remove these accumulated errors using such methods as:
– Have the robot follow a line of known heading

– Have the robot physically align itself with a known object – which
is the method we will explore in this activity

© 1993-2013 KIPR

320

Physically Aligning Robot With
a Wall

• Extended surfaces such as the border of the Botball field
are ideal for reducing rotation errors

• Several methods can be used including:
– Having a large flat front or rear of the robot and driving the robot so that the flat

surface of the robot is forced against the wall. The disadvantage of this method is
that there is no verification it has succeeded

– Use two contact sensors on the front or rear edge of the robot (whichever end is
going to be against the wall). When the first sensor makes contact with the wall,
rotate the robot such that the second sensor contacts the wall while maintaining
contact with the first sensor

– Use the Create bumper against flat surface: there are two switches, if you find out
range where both are pressed, and then move halfway through that range, Create
should be aligned (assuming bumper activation is symmetric).

© 1993-2013 KIPR

321

Activity 17
Using Two Sensors to Align to Wall

• Build a two bumper sensor
(an example is on the left)

• Make sure the sensors can
activate independently

• Attach it to one of your
robots

• Write a program so that if
the robot runs into a wall
with the bumper it rotates
until both sensors are
activated

© 1993-2013 KIPR

322

Aligning Robot With a Wall Using
Create Bumper

//Define the base robot speed and the forward offse t to keep the bumper pressed
#define SPEED 50
#define FOR 15
double timeTurn2Bumps(int dir); // function measures how long both bumpers are pres sed
void turnHalfTime2Bumps(int dir, double time); //turn in direction dir for half of time
int main()

{
int dir= 1; //dir = 1 means CCW and -1 means CW
create_connect(); // connect to Create
printf("press A to start towards a wall\n");
while (a_button()== 0); // wait for the A button to be pressed
while (!get_create_lbump() && !get_create_rbump()){

create_drive_straight(2*SPEED); // drive forward till either bumper is pressed
} //if the left bumper and not the right is pressed, reverse rotation direction
if (get_create_lbump() && !get_create_rbump()) dir=-di r;
else { //if both bumpers are pressed, spin until only the right is pressed

if (get_create_lbump() && get_create_rbump()){
while (get_create_rbump()){

create_spin_CCW(50);
}
msleep(100); //and then spin 0.1 sec longer

}
} //find how long, during rotation both bumpers are p ressed
turnHalfTime2Bumps(-dir,timeTurn2Bumps(dir)); //then turn back half that time
printf("Create is orthogonal to wall. Done.\n");

}

(Continues on next page)

© 1993-2013 KIPR

323

Aligning Robot With a Wall Using
Create Bumper (Cont'd)

double timeTurn2Bumps(int dir){ // dir determines which direction to rotate
double startTime, turnTime;
create_drive_direct(-dir*SPEED+ FOR,dir*SPEED+ FOR); //spin while pressing forward
while (!(get_create_lbump() && get_create_rbump())); //wait till both bumpers are hit
startTime=seconds(); //seconds uses system clock
while (get_create_lbump() && get_create_rbump()); //wait till both bumpers are hit
turnTime=seconds()-startTime; //turnTime holds the amount of time both bumpers wer e pressed
msleep(100); //turn a little further
create_stop(); //stop
return (turnTime); //send back how long both bumpers were pressed

}

void turnHalfTime2Bumps(int dir, double time){
double startTime;
create_drive_direct(-dir*SPEED+ FOR,dir*SPEED+ FOR); //spin while pressing forward
while (!(get_create_lbump() && get_create_rbump())); //wait till both bumpers are hit
startTime=seconds(); //startTime occurs when both bumpers are pressed
while (seconds()-startTime < time/ 2.0); //keep turning for half of time
create_stop(); //stop and Create should be orthogonal against wall

}

© 1993-2013 KIPR

324

